Advantages of Quick Sort

  • It is a divide-and-conquer algorithm that makes it easier to solve problems.
  • It is efficient on large data sets.
  • It has a low overhead, as it only requires a small amount of memory to function.

QuickSort – Data Structure and Algorithm Tutorials

QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array.

Similar Reads

How does QuickSort work?

The key process in quickSort is a partition(). The target of partitions is to place the pivot (any element can be chosen to be a pivot) at its correct position in the sorted array and put all smaller elements to the left of the pivot, and all greater elements to the right of the pivot. Partition is done recursively on each side of the pivot after the pivot is placed in its correct position and this finally sorts the array. How Quicksort works...

Code implementation of the Quick Sort:

C++ #include using namespace std; int partition(int arr[],int low,int high) { //choose the pivot int pivot=arr[high]; //Index of smaller element and Indicate //the right position of pivot found so far int i=(low-1); for(int j=low;j<=high-1;j++) { //If current element is smaller than the pivot if(arr[j] // Utility function to swap tp integers void swap(int* p1, int* p2) { int temp; temp = *p1; *p1 = *p2; *p2 = temp; } int partition(int arr[], int low, int high) { // choose the pivot int pivot = arr[high]; // Index of smaller element and Indicate // the right position of pivot found so far int i = (low - 1); for (int j = low; j <= high - 1; j++) { // If current element is smaller than the pivot if (arr[j] < pivot) { // Increment index of smaller element i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return (i + 1); } // The Quicksort function Implement void quickSort(int arr[], int low, int high) { // when low is less than high if (low < high) { // pi is the partition return index of pivot int pi = partition(arr, low, high); // Recursion Call // smaller element than pivot goes left and // higher element goes right quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } int main() { int arr[] = { 10, 7, 8, 9, 1, 5 }; int n = sizeof(arr) / sizeof(arr[0]); // Function call quickSort(arr, 0, n - 1); // Print the sorted array printf("Sorted Array\n"); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } return 0; } // This Code is Contributed By Diwakar Jha Java // Java implementation of QuickSort import java.io.*; class GFG { // A utility function to swap two elements static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // This function takes last element as pivot, // places the pivot element at its correct position // in sorted array, and places all smaller to left // of pivot and all greater elements to right of pivot static int partition(int[] arr, int low, int high) { // Choosing the pivot int pivot = arr[high]; // Index of smaller element and indicates // the right position of pivot found so far int i = (low - 1); for (int j = low; j <= high - 1; j++) { // If current element is smaller than the pivot if (arr[j] < pivot) { // Increment index of smaller element i++; swap(arr, i, j); } } swap(arr, i + 1, high); return (i + 1); } // The main function that implements QuickSort // arr[] --> Array to be sorted, // low --> Starting index, // high --> Ending index static void quickSort(int[] arr, int low, int high) { if (low < high) { // pi is partitioning index, arr[p] // is now at right place int pi = partition(arr, low, high); // Separately sort elements before // partition and after partition quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } // To print sorted array public static void printArr(int[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } } // Driver Code public static void main(String[] args) { int[] arr = { 10, 7, 8, 9, 1, 5 }; int N = arr.length; // Function call quickSort(arr, 0, N - 1); System.out.println("Sorted array:"); printArr(arr); } } // This code is contributed by Ayush Choudhary // Improved by Ajay Virmoti Python # Python3 implementation of QuickSort # Function to find the partition position def partition(array, low, high): # Choose the rightmost element as pivot pivot = array[high] # Pointer for greater element i = low - 1 # Traverse through all elements # compare each element with pivot for j in range(low, high): if array[j] <= pivot: # If element smaller than pivot is found # swap it with the greater element pointed by i i = i + 1 # Swapping element at i with element at j (array[i], array[j]) = (array[j], array[i]) # Swap the pivot element with # the greater element specified by i (array[i + 1], array[high]) = (array[high], array[i + 1]) # Return the position from where partition is done return i + 1 # Function to perform quicksort def quicksort(array, low, high): if low < high: # Find pivot element such that # element smaller than pivot are on the left # element greater than pivot are on the right pi = partition(array, low, high) # Recursive call on the left of pivot quicksort(array, low, pi - 1) # Recursive call on the right of pivot quicksort(array, pi + 1, high) # Driver code if __name__ == '__main__': array = [10, 7, 8, 9, 1, 5] N = len(array) # Function call quicksort(array, 0, N - 1) print('Sorted array:') for x in array: print(x, end=" ") # This code is contributed by Adnan Aliakbar C# // C# implementation of QuickSort using System; class GFG { // A utility function to swap two elements static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // This function takes last element as pivot, // places the pivot element at its correct position // in sorted array, and places all smaller to left // of pivot and all greater elements to right of pivot static int partition(int[] arr, int low, int high) { // Choosing the pivot int pivot = arr[high]; // Index of smaller element and indicates // the right position of pivot found so far int i = (low - 1); for (int j = low; j <= high - 1; j++) { // If current element is smaller than the pivot if (arr[j] < pivot) { // Increment index of smaller element i++; swap(arr, i, j); } } swap(arr, i + 1, high); return (i + 1); } // The main function that implements QuickSort // arr[] --> Array to be sorted, // low --> Starting index, // high --> Ending index static void quickSort(int[] arr, int low, int high) { if (low < high) { // pi is partitioning index, arr[p] // is now at right place int pi = partition(arr, low, high); // Separately sort elements before // and after partition index quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } // Driver Code public static void Main() { int[] arr = { 10, 7, 8, 9, 1, 5 }; int N = arr.Length; // Function call quickSort(arr, 0, N - 1); Console.WriteLine("Sorted array:"); for (int i = 0; i < N; i++) Console.Write(arr[i] + " "); } } // This code is contributed by gfgking JavaScript // Function to partition the array and return the partition index function partition(arr, low, high) { // Choosing the pivot let pivot = arr[high]; // Index of smaller element and indicates the right position of pivot found so far let i = low - 1; for (let j = low; j <= high - 1; j++) { // If current element is smaller than the pivot if (arr[j] < pivot) { // Increment index of smaller element i++; [arr[i], arr[j]] = [arr[j], arr[i]]; // Swap elements } } [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; // Swap pivot to its correct position return i + 1; // Return the partition index } // The main function that implements QuickSort function quickSort(arr, low, high) { if (low < high) { // pi is the partitioning index, arr[pi] is now at the right place let pi = partition(arr, low, high); // Separately sort elements before partition and after partition quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } // Driver code let arr = [10, 7, 8, 9, 1, 5]; let N = arr.length; // Function call quickSort(arr, 0, N - 1); console.log("Sorted array:"); console.log(arr.join(" ")); PHP

Complexity Analysis of Quick Sort:

Time Complexity:...

Advantages of Quick Sort:

It is a divide-and-conquer algorithm that makes it easier to solve problems.It is efficient on large data sets.It has a low overhead, as it only requires a small amount of memory to function....

Disadvantages of Quick Sort:

It has a worst-case time complexity of O(N2), which occurs when the pivot is chosen poorly.It is not a good choice for small data sets.It is not a stable sort, meaning that if two elements have the same key, their relative order will not be preserved in the sorted output in case of quick sort, because here we are swapping elements according to the pivot’s position (without considering their original positions)....

Contact Us