Class 12 NCERT Solutions- Mathematics Part ii – Chapter 7– Integrals Exercise 7.4

Question 1: 3x2/(x6 + 1)

Solution:

Let x3 = t

So, 3x2dx = dt

=> ∫32 ∕ (x6 + 1) dx

= ∫dt ∕ (t2 + 1)

= tan-1 t + C

= tan-1 (x3) + C

Question 2: 1 ∕ √(1+4x2)

Solution:

Let 2x = t

So, 2dx = dt

=> ∫ 1 ∕ √(1 + 4x2 )dx

= 1 ∕ 2 [ log | t + √(t2 + 1) | ] + C

= 1 ∕ 2 [ log | 2x + √(4x2 + 1) | ] + C

Question 3: 1 / (√(2-x)2 + 1)

Solution:

Let 2 – x = t

=> -dx = dt

=> ∫ 1 ∕ ( √(2 – x)2 +1) dx

= -∫ 1 ∕ (√(t2 + 1) dt

= -log | t + √(t2 + 1) | + C

= -log |2 – x + √((2 – x)2+ 1) | + C

Question 4: 1 ∕ √(9 – 25x2)

Solution:

Let 5x = t

So, 5dx = dt

=> ∫ 1 ∕ √ (9 – 25x2) dx

= 1 ∕ 5 ∫ 1 ∕ √ (9 – t2) dt

= 1 ∕ 5 ∫ 1 ∕ √(32 – t2) dt

= 1 ∕ 5 sin-1(t ∕ 3) + C

= 1 ∕ 5 sin-1(5x ∕ 3) + C

Question 5: 3x ∕ (1 + 2x4)

Solution:

Let √2x2 = t

So, 2√2x dx = dt

∫ 3x ∕ √ (1 + 2x4) dx

= 3∕ 2√2 ∫ dt ∕ (1+t2)

= 3∕ 2√2 [ tan-1 t] + C

= 3∕ 2√2 [ tan-1(√2 x2)] + C

Question 6: x2 ∕ (1 – x6)

Solution:

Let x3 = t

So, 3x2 dx = dt

∫ x2 ∕ (1 – x6) dx

= 1 ∕ 3 ∫ dt ∕ (1 – t2)

= 1 ∕ 3 [1 ∕ 2 log |(1 + t) ∕ (1 – t)| ] + C

= 1 ∕ 6 log |(1 + x3) ∕ (1 – x3) | + C

Question 7: (x – 1) ∕ √ (x2 – 1)

Solution:

∫ (x – 1) ∕ √ (x2 – 1) dx

= ∫ (x ∕ √ (x2 – 1) dx – ∫ 1 ∕ √ (x2 – 1) dx————- (i)

For ∫ x ∕ √ (x2 – 1) dx , Let x2-1 = t => 2x dx = dt

∫ x ∕ √ (x2 – 1) dx

= 1 ∕ 2 ∫ dt ∕ √t

= 1 ∕ 2 ∫ t-1/2 dt

= 1 ∕ 2 [ 2t1/2]

= √t

= √(x2 – 1)

From (1), we obtain

∫ (x – 1) ∕ √ (x2 – 1) dx

∫ (x ∕ √ (x2 – 1) dx – ∫ 1 ∕ √ (x2 – 1) dx

= √ (x2– 1) – log | x+ √(x2– 1)| + C

Question 8: x ∕ √ (x6+a6)

Solution:

Let x3 = t

So, 3x2 dx = dt

∫ x2 ∕ √(x6 + a6) dx

= ∫dt ∕ √ (t2 + (a3)2 )

= 1 ∕ 3 log |t + √(t2 + a6) | + C

= 1 ∕ 3 log |x3 + √(x6 + a6) | + C

Question 9: sec2x ∕ √ (tan2x + 4)

Solution:

Let tan x = t

So, sec2x dx = dt

∫ sec2x dx ∕ √(tan2x + 4)

= ∫ dt ∕ √(t2 + 22)

= log |t + √(t2 + 4) | + C

= log | tan x + √(tan2x + 4) | + C

Question 10: 1 ∕ √ (x2+2x+2)

Solution:

1 ∕ √ (x2 + 2x + 2) = 1 ∕ √ ((x + 1)2 + (1)2) dx

Let x + 1 = t

So, dx = dt

=> ∫ 1 ∕ √ (x2 + 2x + 2) dx = ∫ 1 ∕ √(t2 + 1) dt

= log | t + √(t2 + 1) | + C

= log | (x + 1) + √((x + 1)2 + 1) | + C

= log | (x + 1) + √(x2 + 2x + 1) | + C

Question 11: 1 ∕ (9x2 + 6x + 5)

Solution:

∫ 1 ∕ (9x2+6x+5) dx = ∫1 ∕ ((3x+1)2 + (2)2) dx

Let (3x+1) = t

So, 3dx = dt

∫1 ∕ ((3x+1)2 + (2)2) dx

= 1 ∕ 3 ∫ 1 ∕ (t2+22) dt

= 1 ∕ 3 [ 1 ∕ 2 tan-1❲t ∕ 2❳] + C

= 1 ∕ 6 tan-1((3x+1) ∕ 2) + C

Question 12: 1 ∕ (√(7-6x-x2))

Solution:

7-6x-x2 can be written as 7- (x2+6x+9-9)

Therefore

7- (x2+6x+9-9)

= 16 – (x2+6x+9)

= 16 – (x+3)2

= (4)2 – (x+3)2

So, ∫ 1 ∕ (√(7-6x-x2) ) dx

= ∫ 1 ∕ √ ( (4)2 – (x+3)2 ) dx

Let x+3 = t

=> dx = dt

=> ∫ 1 ∕ √ ( (4)2 – (x+3)2 ) dx

=> ∫ 1 ∕ √ ( (4)2 – (t)2 ) dt

=> sin-1(t ∕ 4) + C

=> sin-1((x+3) ∕ 4) + C

Question 13: 1 ∕ √((x-1)(x-2))

Solution:

(x-1)(x-2) can be written as x2-3x+2

Therefore,

x2-3x+2

= x-3x + 9 ∕ 4 – 9 ∕ 4 + 2

= (x – 3 ∕ 2)2 – 1 ∕ 4

= (x- 3 ∕ 2 )2 – (1 ∕ 2)2

So, ∫ 1 ∕ √((x-3∕2)2-(1 ∕ 2)2) dx

Let x – 3 ∕ 2 = t

So, dx = dt

∫1 ∕ √((x-3∕2)2-(1 ∕ 2)2) dx

= ∫ 1 ∕ √ (t2 – (1 ∕ 2)2) dt

= log | t + √(t2 – (1 ∕ 2)2) + C

= log | (x- 3 ∕ 2) + √(x2-3x+2) + C

Question 14: 1 ∕ √ (8+3x-x2)

Solution:

8+3x-x2 can be written as 8 – (x – 3x + 9 ∕ 4 – 9 ∕ 4)

Therefore,

8 – (x2-3x + 9 ∕ 4 – 9 ∕ 4)

= 41 ∕ 4 – (x-3 ∕ 2)2

=> ∫ 1 ∕ √ (8+3x-x2) dx = ∫ 1 ∕ √ (41 ∕ 4 – (x- 3 ∕ 2 )2) dx

Let x- 3 ∕ 2 = t

So, dx = dt

=> ∫ 1 ∕ √ (41 ∕ 4 – (x- 3 ∕ 2 )2) dx

= ∫ 1 ∕ √ ( (√41 ∕ 2)2 – t2) dt

= sin-1{t ∕ √41∕2} + C

= sin-1{(x-3/2) ∕ √41∕2} + C

= sin-1{(2x-3) ∕ √41} + C

Question 15: 1 ∕ √((x-a)(x-b))

Solution:

(x-a)(x-b) can be written as x2 – (a+b)x +ab

Therefore,

x2 – (a+b)x +ab

= x2 – (a+b)x + (a+b) ∕ 4 – (a+b) ∕ 4 + ab

= [x – (a+b) ∕ 2 ]2 – (a-b)2 ∕ 4

= ∫ 1 ∕ √ (x-a)(x-b) dx

= ∫ 1 ∕ √{x – (a+b) ∕ 2}2 – {(a-b)/2}2 dx

= ∫ 1 ∕ √ [ t2 – ({a-b}/2)2] dt

= log | t + √ [ t2 -( {a-b}/2)2] | + C

= log | { x – (a+b)/2} + √(x-a)(x-b) | + C

Question 16: 1(4x+1) ∕ √(2x2+x-3)

Solution:

Let 4x + 1 = A d/dx (2x+x-3) + B

=> 4x +1 = A(4x+1) + B

=> 4x+1 = 4 Ax + A + B

Equating the coefficients of x and constant term on both sides, we obtain

4A = 4 => A = 1

A+B = 1 => B = 0

Let 2x2 + x – 3 = t

So, (4x+1) dx = dt

=> ∫ (4x+1) ∕ √ (2x2 +x-3) dx

= ∫ 1 ∕ √t dt

= 2√t + C

= 2 √2x+x-3 + C

Question 17: (x+2) ∕ √(x2-1)

Solution:

Let x+2 = A d/ dx (x2-1) + B ———– (1)

=> x + 2 = A (2x) + B

Equating the coefficients of x and constant term on both sides, we obtain

2A = 1 => A = 1/2

B = 2

From (1), we obtain

(x+2) = 1/2 (2x) + 2

Then, ∫ (x+2) ∕ √ (x2-1) dx

= ∫ (1/2 (2x) + 2 ) / √ (x2 – 1) dx

= 1/2 ∫ 2x ∕ √ (x2 – 1) dx + ∫ 2 ∕ √(x-1) dx ———-(2)

In 1/2 ∫ 2x ∕ √ (x2 – 1) dx ,

let x2-1 = t

So, 2x dx = dt

= 1/2 ∫ 2x ∕ √ (x2 – 1) dx

= 1/2 ∫ dt ∕ √t

= 1/2 [2√t ]

= √t

= √(x2-1)

Then, ∫ 2 ∕ √(x2-1) dx = 2 ∫ 1 ∕ √(x2-1) dx

= 2 log | x + √ (x2-1) |

From equation (2), we obtain

∫ (x+2) ∕ √ (x2-1) dx = √ (x2-1)+ 2 log | x + √ (x2-1) | +C

Question 18: (5x-2) ∕ (1+2x+3x2)

Solution:

Let 5x-2 = A d ∕ dx (1+2x+3x2) + B

=> 5x-2 = A(2+6x) + B

Equating the coefficients of x and constant term on both sides, we obtain

5 = 6A => A = 5 ∕ 6

2A + = -2 => B = – 11 ∕ 3

So, 5x -2 = 5 ∕ 6(2+6x) + (-11 ∕ 3)

=> ∫ (5x-2) ∕ (1+2x+3x2) dx

=> ∫ {5∕6 (2+6x) – 11 ∕3} ∕ (1+2x+3x2) dx

=> 5 ∕ 6 ∫ (2+6x) ∕ (1+2x+3x2) dx – 11 ∕ 3 ∫ 1 ∕ (1+2x+3x2) dx

Let I1 = ∫ (2+6x) ∕ (1+2x+3x2) dx and I2 = ∫ 1 ∕ (1+2x+3x2) dx

∫ (5x-2) ∕ (1+2x+3x) dx = 5 ∕ 6 I1 – 11 ∕ 3 I2

I = ∫(2+6x) ∕ (1+2x+3x2) dx

Let 1+2x+3x2 = t

=> (2+6x)dx = dt

I1 = ∫ dt/ t

I1 = log|t|

I1 = log|1+2x+3x2|————–(2)

I2 = ∫ 1 ∕ (1+2x+3x2) dx

1+2x+3x2 can by written as 1+3{x2+2 ∕ 3 x}

Therefore,

1+3{x2+2 ∕ 3 x}

= 1+3{x2 +2∕3 x + 1 ∕ 9 – 1∕ 9 }

= 1 + 3{x+1 ∕3}2 – 1 ∕ 3

= 2 ∕ 3 + 3 {x + 1 ∕ 3}2

= 3 [{x+1 ∕ 3}2 + 2 ∕ 9 ]

= 3 [{x+1 ∕ 3}2 + {√2 ∕ 3}2 ]

I = 1 ∕ 3 ∫ 1 ∕ [(x+1 ∕ 3)2 + (√2 ∕ 3)2 ] dx

= 1 ∕ 3 [1 ∕ (√2 / 3) tan-1{ (x+1/3) ∕ (√2/3)}]

= 1 ∕ 3 [ 3 ∕ √2 tan-1{ (3x+1) ∕ √2} ]

= 1 ∕ √2 tan-1{(3x+1) ∕ √2 } ———————(3)

Substituting equation (2) and (3) in equation (1), we obtain

∫ (5x-2) ∕ (1+2x+3x2) dx = 5 ∕ 6[ log|1+2x+3×2| ] – 11/3 [ 1 ∕ √2 tan-1{(3x+1) ∕ √2 } ] + C

= 5 ∕ 6[ log|1+2x+3x2| ] – 11/3√2 tan-1{(3x+1) ∕ √2 } + C

Question 19: (6x+7) ∕ (√((x-5)(x-4))

Solution:

(6x+7) ∕ (√((x-5)(x-4)) = (6x+7) ∕ √ (x2-9x+20)

Let 6x+7 = A d∕ dx (x2-9x+20) + B

=> 6x+7 = A(2x-9)+B

Equating the coefficients of x and constant term on both sides, we obtain

2A = 6 => A = 3

-9A+B = 7 => B = 34

6x+7 = 3(2x-9)+34

∫ (6x+7) ∕ √(x2-9x+20) dx

= ∫ (3(2x-9)+34) ∕ √(x2-9x+20) dx

= 3 ∫ (2x-9) ∕ √(x2-9x+20) dx + 34 ∫ 1 ∕ √(x2-9x+20) dx

Let I1 = ∫ (2x-9) ∕ √(x2-9x+20) dx and I2 = ∫ 1 ∕ √(x2-9x+20) dx

∫ (6x+7) ∕ √(x2-9x+20) dx = 3I1 + 34I2————— (1)

I1 = ∫ (2x-9) ∕ √(x2-9x+20) dx

Let x2-9x+20 = t

=> (2x-9)dx = dt

=> I1 = dt / √t

I = 2√(x2-9x+20)————-(2)

and I2 = ∫ 1 ∕ √(x2-9x+20) dx

x2-9x+20 can be written s x2-9x+20 + 81/4 – 81/4

Therefore,

x2-9x+20 + 81/4 – 81/4

= { x-9/4}2 – 1/4

= { x-9/4}2 – (1/2)2

=> I2 = ∫ 1 ∕ √((x-9/2)2 – (1/2)2) dx

I = log |{ x-9/2}+ √(x2-9x+20) |—- (3)

Substituting equation (2) and (3) in equation (1), we obtain

∫ (6x+7) ∕ √(x2-9x+20) dx

= 3[ 2√(x2-9x+20) ] + 34 log |{ x-9/2}+ √(x2-9x+20) | + C

= 6√(x2-9x+20) + 34 log |{ x-9/2}+ √(x2-9x+20) | + C

Question 20: (x+2) ∕ √(4x-x2)

Solution:

Let x+2 = A d/dx(4x-x2) + B

=> x+2 = A(4-2x) + B

Equating the coefficients of x and constant term on both sides, we obtain

-2A = 1

=> A = -1/2

4A+B = 2 => B = 4

=> (x+2) = -1/2(4-2x)+4

∫ (x+2) ∕ √(4x-x2) dx = ∫ { -1/2 (4-2x)} ∕ √(4x-x2) dx

= -1/2 ∫ (4-2x) ∕ √(4x-x2) dx + 4 ∫ 1 ∕ √(4x-x2) dx

Let I1 = ∫ (4-2x) ∕ √(4x-x2) dx and I2= ∫1 ∕ √(4x-x2) dx

∫ (x+2)∕ √(4x-x2) dx = -1/2 I1 + 4I2—————————————-(1)

Then, I1 = ∫(4-2x) ∕ √(4x-x2) dx

Let 4x-x2 = t

=> (4-2x)dx = dt

=> I1 = ∫ dt∕ √(t) = 2√t = 2√(4x-x2)——————————(2)

I2 = ∫1 ∕ √(4x-x2) dx

=> 4x-x2 = -(-4x+x2)

= (-4x+x2+4-4) = 4-(x-22)

= (2)2 – (x-2)2

So, I = I1 = ∫ 1 ∕ √{(2)2 – (x-2)2} dx = sin-1{ (x-2)/2}———————(3)

Using equation (2) and (3) in equation (1), we obtain

∫ (x+2) ∕ √(4x-x2) dx = -1/2 [2√(4x-x2) ] + 4sin-1{ (x-2)/2} + C

= -√(4x-x2) + 4sin-1{ (x-2)/2} + C

Question 21: (x+2) ∕ √(x2+2x+3)

Solution:


∫(x+2) ∕ √(x2+2x+3) dx

1 ∕ 2 ∫ 2(x+2) ∕ √(x2+2x+3) dx

1 ∕ 2 ∫ (2x+4) ∕ √(x2+2x+3) dx

1 ∕ 2 ∫ (2x+2) ∕ √(x2+2x+3) dx + 1 ∕ 2 ∫ 2 ∕ √(x2+2x+3) dx

1 ∕ 2 ∫ (2x+2) ∕ √(x2+2x+3) dx + ∫ 1 ∕ √(x2+2x+3) dx

Let I1 = ∫ (2x+2) ∕ √(x2+2x+3) dx and I2 = ∫ 1 ∕ √(x2+2x+3) dx

So, ∫(x+2) ∕ √(x2+2x+3) dx = 1 ∕ 2 I1 + I2 ——————-(1)

Then, I1 = ∫ (2x+2) ∕ √(x2+2x+3) dx

Let x2 +2x+3 = t

=> (2x+2) dx = dt

I1 = ∫dt/ √t = 2√t = 2√(x2+2x+3)—————-(2)

I2 = ∫ 1 ∕ √(x2+2x+3) dx

=> x2+2x+3 = x2+2x+1+2 = (x+1)2 + (√2)2

I = ∫ 1 ∕ √{ (x+1)2 + (√2)2} dx = log | (x+1) + √(x2+2x+3) |————– (3)

Using equation (2) and (3) in equation (1), we obtain

∫(x+2) ∕ √(x2+2x+3) dx = 1/2 [2√(x2+2x+3) ] + log | (x+1) + √(x2+2x+3) | + C

=> √(x2+2x+3)+ log | (x+1) + √(x2+2x+3) | + C

Question 22: (x+3) ∕ (x2-2x-5)

Solution:

Let (x+3) = A d/dx (x2-2x-5) + B

(x+3) = A(2x-2) + B

Equating the coefficients of x and constant term on both sides, we obtain

2A = 1 => A = 1/2

-2A+B = 3 => B = 4

(x+3) = 1/2 (2x-2)+4

=> ∫ (x+3) ∕ (x2-2x-5) dx = ∫ {/2 (2x-2) + 4 } ∕ (x2-2x-5) dx

=> 1/2∫(2x-2) ∕(x2-2x-5) dx +4 ∫ 1 ∕ (x2-2x-5) dx

=> I1 = ∫(2x-2) ∕ (x2-2x-5) dx and I2 = ∫ 1 ∕ (x2-2x-5) dx

∫ (x+3) ∕ (x2-2x-5) dx = 1/2 I1 + 4I2————— (1)

Then, I1 = ∫(2x-2) ∕ (x2-2x-5) dx

Let x2-2x-5 = t

(2x-2)dx = dt

=> I1 = ∫ dt ∕ t = log|t| = log | x2-2x-5 |—————– (2)

I2 = ∫ 1 ∕ (x2-2x-5) dx

= ∫ 1 ∕ {(x2-2x+1) -6} dx

= ∫ 1 ∕ {(x-1)2 -(√6)2} dx

= 1 ∕ 2√6 log |{x-1-√6} ∕ {x-1+√6} |—————– (3)

Substituting equation (2) and (3) in equation (1), we obtain

∫ (x+3) ∕ (x2-2x-5) dx = 1 ∕ 2 log | x2-2x-5 | + 4 ∕ 2√6 log |{x-1-√6} ∕ {x-1+√6} | + C

= 1 ∕ 2 log | x2-2x-5 | + 2 ∕ √6 log |{x-1-√6} ∕ {x-1+√6} | + C

Question 23: (5x+3) ∕√ (x2+4x+10)

Solution:

Let 5x+3 = A d/dx (x2+4x+10) + B

=> 5x+3 = A(2x+4) + B

Equating the coefficients of x and constant term on both sides, we obtain

2A = 5 => A = 5/2

4A+B = 3 => B = -7

5X+3 = 5/2 (2X+4) – 7

∫(5x+3) ∕√ (x2+4x+10) dx

=> ∫ {5/2 (2x+4-7)} ∕ √{x2+4x+10} dx

=> 5/2 ∫(2x+) ∕ √{x2+4x+10} dx – 7 ∫1/√{x2+4x+10} dx

Let I1 = ∫(2x+) ∕ √{x2+4x+10} dx and I2 = ∫1/ √{x2+4x+10} dx

∫(5x+3) ∕√ (x2+4x+10) dx = 5/2 I1 – 7I2————-(1)

Then I1 = ∫(2x+) ∕ √{x2+4x+10} dx

Let x2+4x+10 = t

So, (2x+4)dx = dt

=> I1 = ∫ dt /√t = 2√(x2+4x+10) —————–(2)

I2 = ∫1/ √{x2+4x+10} dx

= ∫1/ √{(x2+4x+4)+6} dx

= ∫1/ √{(x+2)2 +(√6)2} dx

= log | (x+2)√{x2+4x+10} |——————— (3)

Using equation (2) and (3) in equation (1), we obtain

∫ (5x+3) ∕√ (x2+4x+10) dx = 5/2 [ 2√(x2+4x+10) ] -7 log | (x+2)√{x2+4x+10} | + C

= 5 [ √(x2+4x+10) ] -7 log | (x+2)√{x2+4x+10} | + C

Question 24: ∫ dx ∕ (x2+2x+2) equals

(A) x tan-1(x+1) + C

(B) tan-1(x+1) + C

(C) (x+1) tan-1x + C

(D) tan-1x + C

Solution:

To solve the integral [Tex]\int \frac{dx}{x^2+2x+2}[/Tex], we can use the method of completing the square.

First, let’s complete the square in the denominator:

[Tex]x^2 + 2x + 2 = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1[/Tex]

Now, we can rewrite the integral as:

[Tex]\int \frac{dx}{(x + 1)^2 + 1}[/Tex]

Next, we can make a substitution to simplify the integral. Let u = x + 1, then du = dx.

Substituting u = x + 1 and du = dx, we get:

[Tex]\int \frac{du}{u^2 + 1}[/Tex]

Now, this is a standard integral:

[Tex]\int \frac{du}{u^2 + 1} = \arctan(u) + C[/Tex]

Finally, substituting back u = x + 1 and adding the constant of integration C, we get the final result:

[Tex]\int \frac{dx}{x^2+2x+2} = \arctan(x + 1) + C[/Tex]

So, the solution to the integral is arctan(x + 1) + C, where C is the constant of integration.

Correct Opition is B

Question 25: ∫ dx ∕ √(9x-4x2) equals

(A) 1/9 sin-1{ (9x-8)/8} + C

(B) 1/2 sin-1{ (8x-9)/9} + C

(C) 1/3 sin-1{ (9x-8)/8} + C

(D) 1/2 sin-1{ (9x-8)/8} + C

Solution:

Factor out -4 from the square root to simplify:

[Tex]\int \frac{dx}{\sqrt{-4(x^2 – \frac{9}{4}x)}}[/Tex]

[Tex]x^2 – \frac{9}{4}x = \left(x – \frac{9}{8}\right)^2 – \left(\frac{9}{8}\right)^2[/Tex]

[Tex]= \frac{1}{2i} \int \frac{dx}{\sqrt{\left(x – \frac{9}{8}\right)^2 – \left(\frac{9}{8}\right)^2}}[/Tex]

Perform a trigonometric substitution: Let [Tex]x – \frac{9}{8} = \frac{9}{8} \sin(\theta)[/Tex]

Substitute [Tex]dx = \frac{9}{8} \cos(\theta) d\theta[/Tex] and simplify.

[Tex]x – \frac{9}{8} = \frac{9}{8} \sin(\theta)[/Tex]

[Tex]\frac{1}{2} \sin^{-1} \left( \frac{9x – 8}{8} \right) + C[/Tex]

Correct Solution: is B



Contact Us