Formulating a relation among the states

This part is the hardest part of solving a Dynamic Programming problem and requires a lot of intuition, observation, and practice.

Example: 

Given 3 numbers {1, 3, 5}, The task is to tell the total number of ways we can form a number N using the sum of the given three numbers. (allowing repetitions and different arrangements).

The total number of ways to form 6 is: 8
1+1+1+1+1+1
1+1+1+3
1+1+3+1
1+3+1+1
3+1+1+1
3+3
1+5
5+1

The steps to solve the given problem will be:

  • We decide a state for the given problem. 
  • We will take a parameter N to decide the state as it uniquely identifies any subproblem. 
  • DP state will look like state(N), state(N) means the total number of arrangements to form N by using {1, 3, 5} as elements. Derive a transition relation between any two states.
  • Now, we need to compute state(N). 

How to Compute the state? 

As we can only use 1, 3, or 5 to form a given number N. Let us assume that we know the result for N = 1,2,3,4,5,6 
Let us say we know the result for:
state (n = 1), state (n = 2), state (n = 3) ……… state (n = 6) 
Now, we wish to know the result of the state (n = 7). See, we can only add 1, 3, and 5. Now we can get a sum total of 7 in the following 3 ways:

1) Adding 1 to all possible combinations of state (n = 6) 
Eg : [ (1+1+1+1+1+1) + 1] 
[ (1+1+1+3) + 1] 
[ (1+1+3+1) + 1] 
[ (1+3+1+1) + 1] 
[ (3+1+1+1) + 1] 
[ (3+3) + 1] 
[ (1+5) + 1] 
[ (5+1) + 1] 

2) Adding 3 to all possible combinations of state (n = 4);
[(1+1+1+1) + 3] 
[(1+3) + 3] 
[(3+1) + 3] 

3) Adding 5 to all possible combinations of state(n = 2) 
[ (1+1) + 5]

(Note how it sufficient to add only on the right-side – all the add-from-left-side cases are covered, either in the same state, or another, e.g. [ 1+(1+1+1+3)]  is not needed in state (n=6) because it’s covered by state (n = 4) [(1+1+1+1) + 3])

Now, think carefully and satisfy yourself that the above three cases are covering all possible ways to form a sum total of 7;
Therefore, we can say that result for 
state(7) = state (6) + state (4) + state (2) 
OR
state(7) = state (7-1) + state (7-3) + state (7-5)
In general, 
state(n) = state(n-1) + state(n-3) + state(n-5)

Below is the implementation of the above approach:

C++




// Returns the number of arrangements to
// form 'n'
int solve(int n)
{
   // base case
   if (n < 0)
      return 0;
   if (n == 0) 
      return 1; 
 
   return solve(n-1) + solve(n-3) + solve(n-5);
}   


Java




// Returns the number of arrangements to
// form 'n'
static int solve(int n)
{
   // base case
   if (n < 0)
      return 0;
   if (n == 0
      return 1
 
   return solve(n-1) + solve(n-3) + solve(n-5);
}   
 
// This code is contributed by Dharanendra L V.


Python3




# Returns the number of arrangements to
# form 'n'
def solve(n):
   
  # Base case
  if n < 0:
    return 0
  if n == 0:
    return 1
   
  return (solve(n - 1) +
          solve(n - 3) +
          solve(n - 5))
 
# This code is contributed by GauriShankarBadola


C#




// Returns the number of arrangements to
// form 'n'
static int solve(int n)
{
   // base case
   if (n < 0)
      return 0;
   if (n == 0) 
      return 1; 
 
   return solve(n-1) + solve(n-3) + solve(n-5);
}   
 
// This code is contributed by Dharanendra L V.


Javascript




<script>
 
// Returns the number of arrangements to
// form 'n'
 
function solve(n)
{
   // base case
   if (n < 0)
      return 0;
   if (n == 0) 
      return 1; 
 
   return solve(n-1) + solve(n-3) + solve(n-5);
}   
 
// This Code is Contributed by Harshit Srivastava
 
</script>


Time Complexity: O(3N), As at every stage we need to take three decisions and the height of the tree will be of the order of n.
Auxiliary Space: O(N), The extra space is used due to the recursion call stack.

The above code seems exponential as it is calculating the same state again and again. So, we just need to add memoization

Steps for how to solve a Dynamic Programming Problem

Similar Reads

Steps to solve a Dynamic programming problem:

Identify if it is a Dynamic programming problem. Decide a state expression with the Least parameters. Formulate state and transition relationship. Apply tabulation or memorization....

Step 1: How to classify a problem as a Dynamic Programming Problem?

Typically, all the problems that require maximizing or minimizing certain quantities or counting problems that say to count the arrangements under certain conditions or certain probability problems can be solved by using Dynamic Programming. All dynamic programming problems satisfy the overlapping subproblems property and most of the classic Dynamic  programming problems also satisfy the optimal substructure property. Once we observe these properties in a given problem be sure that it can be solved using Dynamic Programming....

Step 2: Deciding the state

Dynamic Programming problems are all about the state and its transition. This is the most basic step which must be done very carefully because the state transition depends on the choice of state definition you make....

Step 3: Formulating a relation among the states

This part is the hardest part of solving a Dynamic Programming problem and requires a lot of intuition, observation, and practice....

Step 4: Adding memoization or tabulation for the state

...

Contact Us