Solved Examples on Cramer’s Rule

Example 1: Solve  [Tex]\left\{ \begin{array}{c} 12x-10y= 46\\ 3x+20y=-11 \\ \end{array} \right. [/Tex]

Solution: 

The given equations in the form of AX = B 

A =[Tex]\begin{bmatrix}    12 & -10 \\    3 & 20   \end{bmatrix}         [/Tex] , 

B = [Tex]\begin{bmatrix}    46  \\    -11       \end{bmatrix}        [/Tex] , 

X = [Tex] \begin{bmatrix}     x \\     y    \end{bmatrix}[/Tex]

Then, the determinant D of matrix 

A = [Tex]\begin{vmatrix}    12 & -10 \\    3 & 20  \\ \end{vmatrix}       [/Tex] 

   = 12 × 20 – 3 × (-10) = 240 + 30 = 270

Now, find Dx and D

Dx [Tex]\begin{vmatrix}    46 & -10 \\    -11& 20  \\ \end{vmatrix}       [/Tex] 

    = [46×20 – (-10)×(-11)] = 920 – 110 = 810

Dy[Tex]\begin{vmatrix}    12 & 46 \\    3 & -11 \\ \end{vmatrix}       [/Tex]  

     =[12×(-11) – 3×46] = -132 -138 = -270

Now, find x = Dx/D, y = Dy/D 

x = 810/270 = 3, y = -270/270 = -1

x = 3, y = -1

Example 2: Solve [Tex]\left\{ \begin{array}{c} 6.6x+0.95y= 5.2\\ 4.2x+8.6y=19.3 \\ \end{array} \right. [/Tex]

Solution:  

The given equations in the form of AX = B 

A = [Tex]\begin{bmatrix}    6.6& 0.95 \\    4.2& 8.6  \\ \end{bmatrix}       [/Tex]        

B = [Tex]\begin{bmatrix}    5.2  \\    19.3       \end{bmatrix}     [/Tex]

X  =  [Tex]\begin{bmatrix}     x \\     y    \end{bmatrix}[/Tex]

Then, the determinant D of matrix 

A = [Tex]\begin{vmatrix}    6.6& 0.95 \\    4.2& 8.6  \\ \end{vmatrix}       [/Tex] = 6.6×8.6 – 4.2×0.95 = 56.76 – 3.99 =52.77

Now, find Dx and Dy 

Dx[Tex]\begin{vmatrix}    5.2& 0.95 \\    19.3& 8.6  \\ \end{vmatrix}       [/Tex] = 5.2 × 8.6 – 19.3 × 0.95 = 44.72 – 18.335 = 26.385

Dy[Tex]\begin{vmatrix}    6.6& 5.2 \\    4.2& 19.3  \\ \end{vmatrix}       [/Tex] = 6.6×19.3 – 4.2×5.2 = 127.38 – 21.84 = 105.54

Now, find x = Dx/D  , y = Dy/D

x = 26.385/52.77 = 0.5, y = 105.54/52.77 = 2

x = 0.5,  y = 2

Example 3: Solve [Tex]\left\{ \begin{array}{c} 3x^2+4y^2= 91\\ 6x^2-y^2=38 \\ \end{array} \right. [/Tex]

Solution: 

Let x2 = a, y2 = b

Then, the equation can be written as,

[Tex]\left\{ \begin{array}{c} 3a+4b= 91\\ 6a-b=38 \\ \end{array} \right.        [/Tex] 

The given equations in the form of AX = B

A = [Tex]\begin{bmatrix}    3& 4 \\    6&-1  \\ \end{bmatrix}      [/Tex]

B = [Tex]\begin{bmatrix}    91  \\    38     \end{bmatrix}     [/Tex]

X = [Tex]\begin{bmatrix}     a \\     b    \end{bmatrix}[/Tex]

Then, the determinant D of matrix A = [Tex]\begin{vmatrix}    3& 4 \\    6& -1   \end{vmatrix}       [/Tex] = 3×(-1) – 6×4 = -3-24 = -27

Now, find Da and Db

Da =[Tex]\begin{vmatrix}    91& 4 \\    38& -1   \end{vmatrix}       [/Tex] 

     = 91×(-1) – 38×4 = – 91 – 152 

     = -243

Db[Tex]\begin{vmatrix}    3& 91 \\    6& 38   \end{vmatrix}     [/Tex]

     = 3×38 – 6×91 = 114 – 546 

     = -432

Now, find a = Da/D, b = Db/D

a = -243/-27 = 9, b = -432/-27 = 16

a = 9, b = 16

Now x2 = a = 9, x = √9 = 3

y2 = b = 16, y = √16 = 4           

Example 4: Solve [Tex]\left\{ \begin{array}{c} 3x-4y+8z= 34\\ 4x+y-2z=1\\ -6x-13y+20z=61\\ \end{array} \right. [/Tex]

Solution: 

The given equations in the form of AX = B

A = [Tex]\begin{bmatrix}    3& -4& 8 \\    4&1&-2  \\-6&-13&20 \end{bmatrix}      [/Tex]

B =[Tex]\begin{bmatrix}    34  \\    1 \\    61     \end{bmatrix}     [/Tex]

X =[Tex]\begin{bmatrix}     x \\     y \\     z    \end{bmatrix}     [/Tex]

Then, the determinant D of matrix A = [Tex]\begin{vmatrix}    3& -4& 8 \\    4&1&-2  \\-6&-13&20 \end{vmatrix}        [/Tex] = 3(20 – 26) – (-4)(80 – 12) + 8(-52-(-6)) = 3×(-6) + 4×68 – 46×8 = -18 + 272 – 368

= -114

Now, find Dx , Dy and Dz

Dx [Tex]\begin{vmatrix}    34& -4& 8 \\    1&1&-2  \\61&-13&20 \end{vmatrix}        [/Tex] 

    = 34(20 – 26) – (-4)(20 + 122) + 8(-13 – 61) 

    = 34 × (-6) + 4 × 142 + 8 × (-74) = -204 + 568 – 592 = -228 

Dy[Tex]\begin{vmatrix}    3& 34& 8 \\    4&1&-2  \\-6&61&20 \end{vmatrix}        [/Tex] 

    = 3(20 + 2 × 61) – 34(80 – 12) + 8(61 × 4 + 6) 

    = 3 × 142 – 34 × 68 + 8 × 250 = 426 – 2312 + 2000 = 114

Dz[Tex]\begin{vmatrix}    3& -4& 34 \\    4&1&1  \\-6&-13&61 \end{vmatrix}        [/Tex]  

    = 3(61+13) – (-4)(61×4 + 6) + 34(-52+6) 

    = 3 × 74 + 4 × 250 + 34 × (-46) = 222 + 1000 -1564  = -342

Now, find x = Dx/D, y = Dy/D, z = Dz/D

x = -228/-114 = 2, y = 114/-114 = -1,  z = -342/-114 = 3   

x = 2,  y = -1,  z = 3

Example 5: Solve [Tex]\left\{ \begin{array}{c} 3x-8y+10z= 8\\ -x+10y+9z=-15\\ 2x-6y+z=11\\ \end{array} \right. [/Tex]

Solution: 

The given equations in the form of AX = B 

A = [Tex]\begin{bmatrix}    3& -8& 10 \\    -1&10&9  \\2&-6&1 \end{bmatrix}      [/Tex]

B = [Tex]\begin{bmatrix}    8  \\    -15 \\    11     \end{bmatrix}     [/Tex]

X = [Tex]\begin{bmatrix}     x \\     y \\     z    \end{bmatrix}     [/Tex]

Then, the determinant D of matrix A = [Tex]\begin{vmatrix}    3& -8& 10 \\    -1&10&9  \\2&-6&1 \end{vmatrix}        [/Tex] = 3(10+54) + 8(-1-18) +10(6-20)                                                                     

 = 3 × 64 – 8 × 19 + 10 × (-14) = 192 -152 – 140 = -100

Now, find Dx , Dy and D

Dx[Tex]\begin{vmatrix}    8& -8& 10 \\    -15&10&9  \\11&-6&1 \end{vmatrix}        [/Tex] 

     = 8(10+54) + 8(-15-99) + 10(90 -110) 

     = 8 × 64 + 8 × (-114) + 10 × (-20) = 512 – 912 – 200 = -600 

Dy[Tex]\begin{vmatrix}    3& 8& 10 \\    -1&-15&9  \\2&11&1 \end{vmatrix}        [/Tex]  

    = 3(-15-99) – 8(-1-18) + 10(-11+30) 

    = 3 × (-114) + 8 × 19 + 10 × 19 = -342 + 152 +190 = 0

Dz[Tex]\begin{vmatrix}    3& -8& 8 \\    -1&10&-15  \\2&-6&11 \end{vmatrix}        [/Tex]  

    = 3(110-90) + 8(-11+30) + 8(6-20) 

    = 3 × 20 + 8 × 19 + 8 × (-14) = 60 + 152 – 112 = 100 

Now, find x = Dx/D, y = Dy/D, z = Dz/D 

x = -600/-100 = 6, y = 0/-100 = 0, z = 100/-100 = -1

x = 6, y = 0, z = -1

Example 6: Solve [Tex]\left\{ \begin{array}{c} 2x+4y-6z= 19\\ 3x+6y-9z=30\\ 4x-7y+z=15\\ \end{array} \right. [/Tex]

Solution: 

The given equations in the form of AX = B  

A = [Tex]\begin{bmatrix}    2& 4& -6 \\    3&6&-9  \\4&-7&1 \end{bmatrix}      [/Tex]

B = [Tex]\begin{bmatrix}    19  \\    30 \\    15    \end{bmatrix}     [/Tex]

X =  [Tex]\begin{bmatrix}     x \\     y \\     z    \end{bmatrix}     [/Tex]

Then, the determinant D of matrix A =  = 2(6 – 63) – 4(3 + 36) – 6(-21 – 24) = 2 × (-57) – 4 × 39 – 6 × (-45) = -114 – 156 + 270  = 0

Since |D| = 0, 

which means the given system of equations does not have a unique solution, which is invalid in Cramer’s Rule as it is defined only for the system of equations that have a unique solution. This means that the given system of equations either has an infinite solution or no solution.

Example 7: Solve: [Tex]\left\{ \begin{array}{c} x+y+z= 6\\ 5x-6y+8z=17\\ 2x+3y-z=5\\ \end{array} \right. [/Tex]

Solution: 

The given equations in the form of AX = B  

A = [Tex]\begin{bmatrix}    1& 1& 1 \\    5&-6&8  \\2&3&-1 \end{bmatrix}      [/Tex]

B = [Tex]\begin{bmatrix}    6  \\    17 \\    5    \end{bmatrix}     [/Tex]

X = [Tex]\begin{bmatrix}     x \\     y \\     z    \end{bmatrix}[/Tex]

Then, the determinant D of matrix A = [Tex]\begin{vmatrix}    1& 1& 1 \\    5&-6&8  \\2&3&-1 \end{vmatrix}        [/Tex] = 1(6 – 24) – 1(-5 – 16) + 1(15 + 12)

= -18 + 21 + 27 = 30

Now, find Dx , Dy and Dz  

Dx[Tex]\begin{vmatrix}    6& 1& 1 \\    17&-6&8  \\5&3&-1 \end{vmatrix}        [/Tex] 

     = 6(6-24) -1(-17-40) +1(51+30) 

     = 6(-18) + 57 + 81 = -108 + 138 = 30

Dy[Tex]\begin{vmatrix}    1& 6& 1 \\    5&17&8  \\2&5&-1 \end{vmatrix}        [/Tex] 

     = 1(-17 – 40) – 6(-5 – 16) + 1(25 – 34) 

     = -57 + 126 – 9 = 60

Dz[Tex]\begin{vmatrix}    1& 1& 6 \\    5&-6&17  \\2&3&5 \end{vmatrix}        [/Tex] 

     = 1(-30 – 51) – 1(25 – 34) + 6(15 + 12) 

     = -81 + 9 + 162 = 90  

Now, find x = Dx/D, y = Dy/D, z = Dz/D 

x = 30/30 = 1, y = 60/30 = 2, z = 90/30 = 3

x = 1,  y = 2, z = 3

Cramer’s Rule

Cramer’s Rule is used to find the unknowns in the given system of linear equations. Cramer’s Rule is the most commonly used formula for finding the solution for the given system of linear equations in matrix form. Cramer’s Rule uses the concept of the determinant to find its solution.

Let’s know How to Apply Cramer’s Rule and its explanation. It requires some prior knowledge of matrices, determinants, and the system of linear equations.

Similar Reads

Cramer’s Rule Definition

Cramer’s rule is a rule which is used to find the unknowns from a given set of linear equations. This rule is valid only if the given system of equations has a unique solution. It doesn’t work with a system of equations with infinitely many solutions or no solution. This rule is used to find solutions for variables with the same number of equations. This rule uses determinants to find the solution of the given equations or the value of unknowns....

Cramer’s Rule Formula

Cramer’s Rule Formula is used to solve the system of equations in the form...

Cramer’s Rule Conditions

Cramer’s rule is applicable only when certain conditions are satisfied. The important condition of Cramer’s rules are,...

Cramer’s Rule For 2 x 2

Now let us solve a system of 2 equations in 2 variables using Cramer’s rule. Given equation,...

Cramer’s Rule For 3 × 3

Now let us solve a system of 2 equations in 2 variables using Cramer’s rule. Given equation,...

How to Use Cramer’s Rule?

Study the following steps to solve the linear equations using Creamer’s Rule,...

Solved Examples on Cramer’s Rule

Example 1: Solve  [Tex]\left\{ \begin{array}{c} 12x-10y= 46\\ 3x+20y=-11 \\ \end{array} \right. [/Tex]...

FAQs on Cramer’s Rule

Question 1: Why is Cramer’s Rule used?...

Contact Us