Inverse of Tangent Function, y = tan-1(x)

tan-1(x) is the inverse function of tan(x). Its domain is ℝ and its range is [-π/2, π/2]. It intersects the coordinate axis at (0, 0). It is an odd function which is strictly increasing in (-∞, ∞).

Graph of Function

Function Analysis

Domain[Tex]x ∈ ℝ[/Tex]
Range[Tex]y ∈ \big(\frac{-\pi}{2}, \frac{\pi}{2}\big)[/Tex]
X – Intercept[Tex]x = 0[/Tex]
Y – Intercept[Tex]y = 0[/Tex]
MinimaThe function does not have any minima points.
MaximaThe function does not have any maxima points.
Inflection Points[Tex](0, 0)[/Tex]
ParityOdd Function
MonotonicityIn (−∞, ∞) strictly Increasing
Asymptotes[Tex]y = \frac{\pi}{2}\space and\space y= \frac{-\pi}{2}[/Tex]

Sample Problems on Inverse of Tangent Function

Problem 1: Find the principal value of the given equation:

y = tan-1(1)

Solution:

We are given that:

y = tan-1(1)

So we can say that,

tan(y) = (1)

We know that the range of the principal value branch of tan-1(x) is (-π/2, π/2) and tan(π/4) = 1.

So, the principal value of tan-1(1) = π/4.

Problem 2: Find the principal value of the given equation:

y = tan-1(√3)

Solution:

We are given that:

y = tan-1(√3)

So we can say that,

tan(y) = (√3)

We know that the range of the principal value branch of tan-1(x) is (-π/2, π/2) and tan(π/3) = √3.

So, the principal value of tan-1(√3) = π/3.

Graphs of Inverse Trigonometric Functions – Trigonometry | Class 12 Maths

Inverse trigonometric functions are the inverse functions of the trigonometric ratios i.e. sin, cos, tan, cot, sec, cosec. These functions are widely used in fields like physics, mathematics, engineering and other research fields. There are two popular notations used for inverse trigonometric functions:

Adding “arc” as a prefix.

Example: arcsin(x), arccos(x), arctan(x), …

Adding “-1” as superscript.

Example: sin-1(x), cos-1(x), tan-1(x), …

In this article, we will learn about graphs and nature of various inverse functions.

Table of Content

  • Inverse of Sine Function, y = sin-1(x)
  • Inverse of Cosine Function, y = cos-1(x)
  • Inverse of Tangent Function, y = tan-1(x)
  • Inverse of Cosecant Function, y = cosec-1(x)
  • Inverse of Secant Function, y = sec-1(x)
  • Inverse of Cotangent Function, y = cot-1(x)

Similar Reads

Inverse of Sine Function, y = sin-1(x)

sin-1(x) is the inverse function of sin(x). Its domain is [−1, 1] and its range is [- π/2, π/2]. It intersects the coordinate axis at (0,0). It is an odd function and is strictly increasing in (-1, 1)....

Inverse of Cosine Function, y = cos-1(x)

cos-1(x) is the inverse function of cos(x). Its domain is [−1, 1] and its range is [0, π]. It intersects the coordinate axis at (1, π/2). It is neither even nor an odd function and is strictly decreasing in (-1, 1)....

Inverse of Tangent Function, y = tan-1(x)

tan-1(x) is the inverse function of tan(x). Its domain is ℝ and its range is [-π/2, π/2]. It intersects the coordinate axis at (0, 0). It is an odd function which is strictly increasing in (-∞, ∞)....

Inverse of Cosecant Function, y = cosec-1(x)

cosec-1(x) is the inverse function of cosec(x). Its domain is (-∞, -1] U [1, ∞) and its range is [-π/2, 0) U (0, π/2]. It doesn’t intercept the coordinate axis. It is an odd function that is strictly decreasing in its domain....

Inverse of Secant Function, y = sec-1(x)

sec-1(x) is the inverse function of sec(x). Its domain is (-∞, -1] U [1, ∞) and its range is [0, π/2) U (π/2, π]. It doesn’t intercept the coordinate axis as it is a discontinuous function. It is neither even nor odd function and is strictly increasing in its domain....

Inverse of Cotangent Function, y = cot-1(x)

cot-1(x) is the inverse function of cot(x). Its domain is ℝ and its range is (0, π). It intersects the coordinate axis at (0, π/2). It is neither even nor odd function and is strictly decreasing in its domain....

Contact Us