How to Apply Trigonometric Substitution Method?

We can apply the trigonometric substitution method as discussed below,

Integral with a2 – x2

Let’s consider an example of the Integral involving a2 – x2.

Example: [Tex]\int \frac{1}{\sqrt{a^2-x^2}}\hspace{0.1cm}dx[/Tex]

Lets put, x = a sinθ

⇒ dx = a cosθ dθ

Thus, I = [Tex]\int \frac{a\hspace{0.1cm}cos\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2-(a\hspace{0.1cm}sin\theta)^2)}}[/Tex]

⇒ I = [Tex]\int \frac{a\hspace{0.1cm}cos\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2cos^2\theta)}}[/Tex]

⇒ I = [Tex]\int 1. d\theta[/Tex]

⇒ I = θ + c

As, x = a sinθ

⇒ θ = [Tex]sin^{-1}(\frac{x}{a})[/Tex]

⇒ I = [Tex]sin^{-1}(\frac{x}{a}) + c[/Tex]

Integral with x2 + a2

Let’s consider an example of the Integral involving x2 + a2.

Example: Find the integral [Tex]\bold{\int \frac{1}{x^2+a^2}\hspace{0.1cm}dx}[/Tex]

Solution:

Lets put x = a tanθ

⇒ dx = a sec2θ dθ, we get

Thus, I = [Tex]\int \frac{1}{(a\hspace{0.1cm}tan\theta)^2+a^2}\hspace{0.1cm}(a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta)[/Tex]

⇒ I = [Tex]\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{a^2(sec^2\theta)}[/Tex]

⇒ I = [Tex]\frac{1}{a}\int 1.d\theta[/Tex]

⇒ I = [Tex]\frac{1}{a} \theta             [/Tex]+ c

As, x = a tanθ

⇒ θ = [Tex]tan^{-1}(\frac{x}{a})[/Tex]

⇒ I = [Tex]\frac{1}{a}tan^{-1}(\frac{x}{a})             [/Tex]+ c

Integral with a2 + x2.

Let’s consider an example of the Integral involving a2+ x2.

Example: Find the integral of [Tex]\bold{\int \frac{1}{\sqrt{a^2+x^2}}\hspace{0.1cm}dx}[/Tex]

Solution:

Lets put, x = a tanθ

⇒ dx = a sec2θ dθ

Thus, I = [Tex]\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2+(a\hspace{0.1cm}tan\theta)^2)}}[/Tex]

⇒ I = [Tex]\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2\hspace{0.1cm}sec^2\theta)}}[/Tex]

⇒ I = [Tex]\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{a\hspace{0.1cm}sec\theta}[/Tex]

⇒ I = [Tex]\int sec\hspace{0.1cm}\theta d\theta[/Tex]

⇒ I = [Tex]log|sec\hspace{0.1cm}\theta+tan\hspace{0.1cm}\theta| + c[/Tex]

⇒ I = [Tex]log|tan\hspace{0.1cm}\theta+\sqrt{1+tan^2\hspace{0.1cm}\theta}| + c[/Tex]

⇒ I = [Tex]log|\frac{x}{a}+\sqrt{1+\frac{x^2}{a^2}}|+ c[/Tex]

⇒ I = [Tex]log|\frac{x}{a}+\sqrt{\frac{a^2+x^2}{a^2}}|+ c[/Tex]

⇒ I = [Tex]log|\frac{x}{a}+\frac{1}{{a}}\sqrt{a^2+x^2}|+ c[/Tex]

⇒ I = [Tex]log|x+\sqrt{a^2+x^2}|-log\hspace{0.1cm}a+ c[/Tex]

⇒ I = [Tex]log|x+\sqrt{a^2+x^2}|+ c_1[/Tex]

Integral with x2 – a2.

Let’s consider an example of the Integral involving x2 – a2.

Example: Find the integral of [Tex]\bold{\int \frac{1}{\sqrt{x^2-a^2}}\hspace{0.1cm}dx}[/Tex]

Let’s put, x = a secθ

⇒ dx = a secθ tanθ dθ

Thus, I = [Tex]\int \frac{a\hspace{0.1cm}sec\theta \hspace{0.1cm}tan\theta\hspace{0.1cm}d\theta}{\sqrt{((a\hspace{0.1cm}sec\theta)^2-a^2)}}[/Tex]

⇒ I = [Tex]\int \frac{a\hspace{0.1cm}sec\theta \hspace{0.1cm}tan\theta\hspace{0.1cm}d\theta}{(a\hspace{0.1cm}tan\theta)}[/Tex]

⇒ I = [Tex]\int sec\theta\hspace{0.1cm}d\theta[/Tex]

⇒ I = [Tex]log|sec\hspace{0.1cm}\theta+tan\hspace{0.1cm}\theta| + c[/Tex]

⇒ I = [Tex]log|sec\hspace{0.1cm}\theta+\sqrt{sec^2\hspace{0.1cm}\theta-1}| + c[/Tex]

⇒ I = [Tex]log|\frac{x}{a}+\sqrt{\frac{x^2}{a^2}-1}|+ c[/Tex]

⇒ I = [Tex]log|\frac{x}{a}+\sqrt{\frac{x^2-a^2}{a^2}}|+ c[/Tex]

⇒ I = [Tex]log|\frac{x}{a}+\frac{1}{{a}}\sqrt{x^2-a^2}|+ c[/Tex]

⇒ I =[Tex] log|x+\sqrt{x^2-a^2}|-log\hspace{0.1cm}a+ c[/Tex]

⇒ I = [Tex]log|x+\sqrt{x^2-a^2}|+ c_1[/Tex]

Read More,

Trigonometric Substitution: Method, Formula and Solved Examples

Trigonometric Substitution is one of the substitution methods of integration where a function or expression in the given integral is substituted with trigonometric functions such as sin, cos, tan, etc. Integration by substitution is an easiest substitution method.

It is used when we make a substitution of a function, whose derivative is already included in the given integral function. By this, the function gets simplified, and simple integrals function is obtained which we can integrate easily. It is also known as u-substitution or the reverse chain rule. Or in other words, using this method, we can easily evaluate integrals and antiderivatives.

Trigonometric Substitution

Similar Reads

What is Trigonometric Substitution?

Trigonometric substitution is a process in which the substitution of a trigonometric function into another expression takes place. It is used to evaluate integrals or it is a method for finding antiderivatives of functions that contain square roots of quadratic expressions or rational powers of the form [Tex]\frac{p}{2}           [/Tex](where p is an integer) of quadratic expressions. Examples of such expressions are...

When to Use Trigonometric Substitution?

We use trigonometric substitution in the following cases,...

How to Apply Trigonometric Substitution Method?

We can apply the trigonometric substitution method as discussed below,...

Sample Problems on Trigonometric Substitution

Problem 1: Find the integral of [Tex]\bold{\int \frac{1}{\sqrt{9-25x^2}} \hspace{0.1cm}dx}[/Tex]...

Trigonometric Substitution – FAQs

What is Trigonometric Substitution?...

Contact Us