C Program for  Matrix Chain Multiplication using Dynamic Programming (Memoization)

Step-by-step approach:

  • Build a matrix dp[][] of size N*N for memoization purposes.
  • Use the same recursive call as done in the above approach:
    • When we find a range (i, j) for which the value is already calculated, return the minimum value for that range (i.e., dp[i][j]).
    • Otherwise, perform the recursive calls as mentioned earlier.
  • The value stored at dp[0][N-1] is the required answer.

Below is the implementation of the above approach:

C




#include <stdio.h>
#include <limits.h>
 
int dp[100][100];
 
// Function for matrix chain multiplication
int matrixChainMemoised(int p[], int i, int j) {
    if (i == j) {
        return 0;
    }
    if (dp[i][j] != -1) {
        return dp[i][j];
    }
    dp[i][j] = INT_MAX;
    for (int k = i; k < j; k++) {
        dp[i][j] = (dp[i][j] < (matrixChainMemoised(p, i, k)
                          + matrixChainMemoised(p, k + 1, j)
                          + p[i - 1] * p[k] * p[j])) ? dp[i][j] : (matrixChainMemoised(p, i, k)
                          + matrixChainMemoised(p, k + 1, j)
                          + p[i - 1] * p[k] * p[j]);
    }
    return dp[i][j];
}
 
int MatrixChainOrder(int p[], int n) {
    int i = 1, j = n - 1;
    return matrixChainMemoised(p, i, j);
}
 
int main() {
    int arr[] = {1, 2, 3, 4};
    int n = sizeof(arr) / sizeof(arr[0]); // Corrected this line
 
    for (int i = 0; i < 100; i++) {
        for (int j = 0; j < 100; j++) {
            dp[i][j] = -1;
        }
    }
 
    printf("Minimum number of multiplications is %d\n", MatrixChainOrder(arr, n));
    return 0;
}


Output

Minimum number of multiplications is 18

Time Complexity: O(N3 )
Auxiliary Space: O(N2) ignoring recursion stack space

C Program for Matrix Chain Multiplication | DP-8

Write a C program for a given dimension of a sequence of matrices in an array arr[], where the dimension of the ith matrix is (arr[i-1] * arr[i]), the task is to find the most efficient way to multiply these matrices together such that the total number of element multiplications is minimum.

Examples:

Input: arr[] = {40, 20, 30, 10, 30}
Output: 26000
Explanation: There are 4 matrices of dimensions 40×20, 20×30, 30×10, 10×30.
Let the input 4 matrices be A, B, C, is, and D.
The minimum number of multiplications is obtained by putting parenthesis in the following way (A(BC))D.
The minimum is 20*30*10 + 40*20*10 + 40*10*30

Input: arr[] = {1, 2, 3, 4, 3}
Output: 30
Explanation: There are 4 matrices of dimensions 1×2, 2×3, 3×4, 4×3.
Let the input 4 matrices be A, B, C, and D.
The minimum number of multiplications is obtained by putting parenthesis in the following way ((AB)C)D.
The minimum number is 1*2*3 + 1*3*4 + 1*4*3 = 30

Input: arr[] = {10, 20, 30}
Output: 6000
Explanation: There are only two matrices of dimensions 10×20 and 20×30.
So there is only one way to multiply the matrices, cost of which is 10*20*30

Similar Reads

C Program for Matrix Chain Multiplication using Recursion:

...

C Program for  Matrix Chain Multiplication using Dynamic Programming (Memoization):

Two matrices of size m*n and n*p when multiplied, they generate a matrix of size m*p and the number of multiplications performed are m*n*p. Now, for a given chain of N matrices, the first partition can be done in N-1 ways. For example, sequence of matrices A, B, C and D can be grouped as (A)(BCD), (AB)(CD) or (ABC)(D) in these 3 ways.  So a range [i, j] can be broken into two groups like {[i, i+1], [i+1, j]}, {[i, i+2], [i+2, j]}, . . . , {[i, j-1], [j-1, j]}. Each of the groups can be further partitioned into smaller groups and we can find the total required multiplications by solving for each of the groups. The minimum number of multiplications among all the first partitions is the required answer....

C Program for Matrix Chain Multiplication using Dynamic Programming (Tabulation):

...

Contact Us