Aho-Corasick algorithm

Aho-Corasick Algorithm finds all words in O(n + m + z) time where z is the total number of occurrences of words in text. The Aho–Corasick string matching algorithm formed the basis of the original Unix command “fgrep”

Preprocessing: Build an automaton of all words in arr[] The automaton has mainly three functions:

Go To:  This function simply follows edges of Trie of all words in arr[]. 
It is represented as 2D array g[][] where we store next state for current state and character.

Failure: This function stores all edges that are followed when current character doesn’t have edge in Trie.
It is represented as1D array f[] where we store next state for current state.

Output: Stores indexes of all words that end at current state. 
It is represented as 1D  array o[] where we store indices of all matching words as a bitmap for current state.

Matching: Traverse the given text over built automaton to find all matching words.
Preprocessing:

Illustration of Aho-Corasick algorithm

Preprocessing: We first Build a Trie (or Keyword Tree) of all words. 

 Build a Trie (or Keyword Tree) of all words.

  • This part fills entries in goto g[][] and output o[].
  • Next, we extend Trie into an automaton to support linear time matching. 

Fills entries in goto g[][] and output o[]

  • This part fills entries in failure f[] and output o[].

Go to:  We build Trie. And for all characters which don’t have an edge at the root, we add an edge back to root.
Failure:  For a state s, we find the longest proper suffix which is a proper prefix of some pattern. This is done using Breadth First Traversal of Trie.
Output: For a state s, indexes of all words ending at s are stored. These indexes are stored as bitwise map (by doing bitwise OR of values). This is also computing using Breadth First Traversal with Failure.

Below is the implementation of the Aho-Corasick Algorithm:

C++




// C++ program for implementation of
// Aho Corasick algorithm for String
// matching
#include <bits/stdc++.h>
using namespace std;
  
// Max number of states in the matching
// machine. Should be equal to the sum
// of the length of all keywords.
  
#define MAXS 500
  
// Maximum number of characters
// in input alphabet
  
#define MAXC 26
  
// OUTPUT FUNCTION IS IMPLEMENTED USING out[]
// Bit i in this mask is one if the word with
// index i appears when the machine enters
// this state.
int out[MAXS];
  
// FAILURE FUNCTION IS IMPLEMENTED USING f[]
int f[MAXS];
  
// GOTO FUNCTION (OR TRIE) IS
// IMPLEMENTED USING g[][]
int g[MAXS][MAXC];
  
// Builds the String matching machine.
// arr - array of words. The index of each keyword is
// important:
//"out[state] & (1 << i)" is > 0 if we just found
// word[i] in the text.
// Returns the number of states that the built machine
// has. States are numbered 0 up to the return value -
// 1, inclusive.
  
int buildMatchingMachine(string arr[], int k)
{
    // Initialize all values in output function as 0.
    memset(out, 0, sizeof out);
  
    // Initialize all values in goto function as -1.
    memset(g, -1, sizeof g);
  
    // Initially, we just have the 0 state
    int states = 1;
  
    // Convalues for goto function, i.e., fill g[][]
    // This is same as building a Trie for arr[]
    for (int i = 0; i < k; i++) {
        string word = arr[i];
        int currentState = 0;
  
        // Insert all characters of current
        // word in arr[]
        for (int j = 0; j < word.length(); j++) {
            int ch = word[j] - 'a';
  
            // Allocate a new node (create a new state)
            // if a node for ch doesn't exist.
            if (g[currentState][ch] == -1)
                g[currentState][ch] = states++;
  
            currentState = g[currentState][ch];
        }
  
        // Add current word in output function
        out[currentState] |= (1 << i);
    }
  
    // For all characters which don't have
    // an edge from root (or state 0) in Trie,
    // add a goto edge to state 0 itself
    for (int ch = 0; ch < MAXC; ch++)
        if (g[0][ch] == -1)
            g[0][ch] = 0;
  
    // Now, let's build the failure function
    // Initialize values in fail function
    memset(f, -1, sizeof f);
  
    // Failure function is computed in
    // breadth first order
    // using a queue
    queue<int> q;
  
    // Iterate over every possible input
    for (int ch = 0; ch < MAXC; ch++) {
  
        // All nodes of depth 1 have failure
        // function value as 0. For example,
        // in above diagram we move to 0
        // from states 1 and 3.
        if (g[0][ch] != 0) {
            f[g[0][ch]] = 0;
            q.push(g[0][ch]);
        }
    }
  
    // Now queue has states 1 and 3
    while (!q.empty()) {
  
        // Remove the front state from queue
        int state = q.front();
        q.pop();
  
        // For the removed state, find failure
        // function for all those characters
        // for which goto function is
        // not defined.
        for (int ch = 0; ch < MAXC; ch++) {
  
            // If goto function is defined for
            // character 'ch' and 'state'
            if (g[state][ch] != -1) {
  
                // Find failure state of removed state
                int failure = f[state];
  
                // Find the deepest node labeled by
                // proper suffix of String from root to
                // current state.
                while (g[failure][ch] == -1)
                    failure = f[failure];
                failure = g[failure][ch];
                f[g[state][ch]] = failure;
  
                // Merge output values
                out[g[state][ch]] |= out[failure];
  
                // Insert the next level node
                // (of Trie) in Queue
                q.push(g[state][ch]);
            }
        }
    }
    return states;
}
  
// Returns the next state the machine will transition to
// using goto and failure functions. currentState - The
// current state of the machine. Must be between
// 0 and the number of states - 1,
// inclusive.
// nextInput - The next character that enters into the
// machine.
  
// This function finds all occurrences of
// all array words in text.
void searchWords(string arr[], int k, string text)
{
  
    // Preprocess patterns.
    // Build machine with goto, failure
    // and output functions
    buildMatchingMachine(arr, k);
  
    // Initialize current state
    int currentState = 0;
  
    // Traverse the text through the
    // built machine to find all
    // occurrences of words in arr[]
    for (int i = 0; i < text.length(); i++) {
        int ch = text[i] - 'a';
  
        // If goto is not defined, use
        // failure function
        while (g[currentState][ch] == -1)
            currentState = f[currentState];
        currentState = g[currentState][ch];
  
        // If match not found, move to next state
        if (out[currentState] == 0)
            continue;
  
        // Match found, print all matching
        // words of arr[]
        // using output function.
        for (int j = 0; j < k; j++) {
            if (out[currentState] & (1 << j))
                cout << "Word " << arr[j]
                     << " appears from "
                     << i - arr[j].length() + 1 << " to "
                     << i << endl;
        }
    }
}
// Driver code
  
int main()
{
    string arr[] = { "he", "she", "hers", "his" };
    int k = sizeof(arr) / sizeof(arr[0]);
    string text = "ahishers";
    searchWords(arr, k, text);
    return 0;
}


Java




// Java program for implementation of
// Aho Corasick algorithm for String
// matching
import java.util.*;
  
class GFG {
  
    // Max number of states in the matching
    // machine. Should be equal to the sum
    // of the length of all keywords.
    static int MAXS = 500;
  
    // Maximum number of characters
    // in input alphabet
    static int MAXC = 26;
  
    // OUTPUT FUNCTION IS IMPLEMENTED USING out[]
    // Bit i in this mask is one if the word with
    // index i appears when the machine enters
    // this state.
    static int[] out = new int[MAXS];
  
    // FAILURE FUNCTION IS IMPLEMENTED USING f[]
    static int[] f = new int[MAXS];
  
    // GOTO FUNCTION (OR TRIE) IS
    // IMPLEMENTED USING g[][]
    static int[][] g = new int[MAXS][MAXC];
  
    // Builds the String matching machine.
    // arr - array of words. The index of each keyword is
    // important:
    //         "out[state] & (1 << i)" is > 0 if we just
    //         found
    // word[i]          in the text.
    // Returns the number of states that the built machine
    // has. States are numbered 0 up to the return value -
    // 1, inclusive.
    static int buildMatchingMachine(String arr[], int k)
    {
  
        // Initialize all values in output function as 0.
        Arrays.fill(out, 0);
  
        // Initialize all values in goto function as -1.
        for (int i = 0; i < MAXS; i++)
            Arrays.fill(g[i], -1);
  
        // Initially, we just have the 0 state
        int states = 1;
  
        // Convalues for goto function, i.e., fill g[][]
        // This is same as building a Trie for arr[]
        for (int i = 0; i < k; ++i) {
            String word = arr[i];
            int currentState = 0;
  
            // Insert all characters of current
            // word in arr[]
            for (int j = 0; j < word.length(); ++j) {
                int ch = word.charAt(j) - 'a';
  
                // Allocate a new node (create a new state)
                // if a node for ch doesn't exist.
                if (g[currentState][ch] == -1)
                    g[currentState][ch] = states++;
  
                currentState = g[currentState][ch];
            }
  
            // Add current word in output function
            out[currentState] |= (1 << i);
        }
  
        // For all characters which don't have
        // an edge from root (or state 0) in Trie,
        // add a goto edge to state 0 itself
        for (int ch = 0; ch < MAXC; ++ch)
            if (g[0][ch] == -1)
                g[0][ch] = 0;
  
        // Now, let's build the failure function
        // Initialize values in fail function
        Arrays.fill(f, -1);
  
        // Failure function is computed in
        // breadth first order
        // using a queue
        Queue<Integer> q = new LinkedList<>();
  
        // Iterate over every possible input
        for (int ch = 0; ch < MAXC; ++ch) {
  
            // All nodes of depth 1 have failure
            // function value as 0. For example,
            // in above diagram we move to 0
            // from states 1 and 3.
            if (g[0][ch] != 0) {
                f[g[0][ch]] = 0;
                q.add(g[0][ch]);
            }
        }
  
        // Now queue has states 1 and 3
        while (!q.isEmpty()) {
  
            // Remove the front state from queue
            int state = q.peek();
            q.remove();
  
            // For the removed state, find failure
            // function for all those characters
            // for which goto function is
            // not defined.
            for (int ch = 0; ch < MAXC; ++ch) {
  
                // If goto function is defined for
                // character 'ch' and 'state'
                if (g[state][ch] != -1) {
  
                    // Find failure state of removed state
                    int failure = f[state];
  
                    // Find the deepest node labeled by
                    // proper suffix of String from root to
                    // current state.
                    while (g[failure][ch] == -1)
                        failure = f[failure];
  
                    failure = g[failure][ch];
                    f[g[state][ch]] = failure;
  
                    // Merge output values
                    out[g[state][ch]] |= out[failure];
  
                    // Insert the next level node
                    // (of Trie) in Queue
                    q.add(g[state][ch]);
                }
            }
        }
        return states;
    }
  
    // Returns the next state the machine will transition to
    // using goto and failure functions. currentState - The
    // current state of the machine. Must be between
    // 0 and the number of states - 1,
    // inclusive.
    // nextInput - The next character that enters into the
    // machine.
    static int findNextState(int currentState,
                             char nextInput)
    {
        int answer = currentState;
        int ch = nextInput - 'a';
  
        // If goto is not defined, use
        // failure function
        while (g[answer][ch] == -1)
            answer = f[answer];
  
        return g[answer][ch];
    }
  
    // This function finds all occurrences of
    // all array words in text.
    static void searchWords(String arr[], int k,
                            String text)
    {
  
        // Preprocess patterns.
        // Build machine with goto, failure
        // and output functions
        buildMatchingMachine(arr, k);
  
        // Initialize current state
        int currentState = 0;
  
        // Traverse the text through the
        // built machine to find all
        // occurrences of words in arr[]
        for (int i = 0; i < text.length(); ++i) {
            currentState = findNextState(currentState,
                                         text.charAt(i));
  
            // If match not found, move to next state
            if (out[currentState] == 0)
                continue;
  
            // Match found, print all matching
            // words of arr[]
            // using output function.
            for (int j = 0; j < k; ++j) {
                if ((out[currentState] & (1 << j)) > 0) {
                    System.out.print(
                        "Word " + arr[j] + " appears from "
                        + (i - arr[j].length() + 1) + " to "
                        + i + "\n");
                }
            }
        }
    }
  
    // Driver code
    public static void main(String[] args)
    {
        String arr[] = { "he", "she", "hers", "his" };
        String text = "ahishers";
        int k = arr.length;
  
        searchWords(arr, k, text);
    }
}
// This code is wriiten by Sundaram.


Python




# Python program for implementation of
# Aho-Corasick algorithm for string matching
  
# defaultdict is used only for storing the final output
# We will return a dictionary where key is the matched word
# and value is the list of indexes of matched word
from collections import defaultdict
  
# For simplicity, Arrays and Queues have been implemented using lists.
# If you want to improve performance try using them instead
  
  
class AhoCorasick:
    def __init__(self, words):
  
        # Max number of states in the matching machine.
        # Should be equal to the sum of the length of all keywords.
        self.max_states = sum([len(word) for word in words])
  
        # Maximum number of characters.
        # Currently supports only alphabets [a, z]
        self.max_characters = 26
  
        # OUTPUT FUNCTION IS IMPLEMENTED USING out []
        # Bit i in this mask is 1 if the word with
        # index i appears when the machine enters this state.
        # Lets say, a state outputs two words "he" and "she" and
        # in our provided words list, he has index 0 and she has index 3
        # so value of out[state] for this state will be 1001
        # It has been initialized to all 0.
        # We have taken one extra state for the root.
        self.out = [0]*(self.max_states + 1)
  
        # FAILURE FUNCTION IS IMPLEMENTED USING fail []
        # There is one value for each state + 1 for the root
        # It has been initialized to all -1
        # This will contain the fail state value for each state
        self.fail = [-1]*(self.max_states + 1)
  
        # GOTO FUNCTION (OR TRIE) IS IMPLEMENTED USING goto [[]]
        # Number of rows = max_states + 1
        # Number of columns = max_characters i.e 26 in our case
        # It has been initialized to all -1.
        self.goto = [
            [-1]*self.max_characters for _ in range(self.max_states + 1)]
  
        # Convert all words to lowercase
        # so that our search is case insensitive
        for i in range(len(words)):
            words[i] = words[i].lower()
  
        # All the words in dictionary which will be used to create Trie
        # The index of each keyword is important:
        # "out[state] & (1 << i)" is > 0 if we just found word[i]
        # in the text.
        self.words = words
  
        # Once the Trie has been built, it will contain the number
        # of nodes in Trie which is total number of states required <= max_states
        self.states_count = self.__build_matching_machine()
  
    # Builds the String matching machine.
    # Returns the number of states that the built machine has.
    # States are numbered 0 up to the return value - 1, inclusive.
  
    def __build_matching_machine(self):
        k = len(self.words)
  
        # Initially, we just have the 0 state
        states = 1
  
        # Convalues for goto function, i.e., fill goto
        # This is same as building a Trie for words[]
        for i in range(k):
            word = self.words[i]
            current_state = 0
  
            # Process all the characters of the current word
            for character in word:
                ch = ord(character) - 97  # Ascii value of 'a' = 97
  
                # Allocate a new node (create a new state)
                # if a node for ch doesn't exist.
                if self.goto[current_state][ch] == -1:
                    self.goto[current_state][ch] = states
                    states += 1
  
                current_state = self.goto[current_state][ch]
  
            # Add current word in output function
            self.out[current_state] |= (1 << i)
  
        # For all characters which don't have
        # an edge from root (or state 0) in Trie,
        # add a goto edge to state 0 itself
        for ch in range(self.max_characters):
            if self.goto[0][ch] == -1:
                self.goto[0][ch] = 0
  
        # Failure function is computed in
        # breadth first order using a queue
        queue = []
  
        # Iterate over every possible input
        for ch in range(self.max_characters):
  
            # All nodes of depth 1 have failure
            # function value as 0. For example,
            # in above diagram we move to 0
            # from states 1 and 3.
            if self.goto[0][ch] != 0:
                self.fail[self.goto[0][ch]] = 0
                queue.append(self.goto[0][ch])
  
        # Now queue has states 1 and 3
        while queue:
  
            # Remove the front state from queue
            state = queue.pop(0)
  
            # For the removed state, find failure
            # function for all those characters
            # for which goto function is not defined.
            for ch in range(self.max_characters):
  
                # If goto function is defined for
                # character 'ch' and 'state'
                if self.goto[state][ch] != -1:
  
                    # Find failure state of removed state
                    failure = self.fail[state]
  
                    # Find the deepest node labeled by proper
                    # suffix of String from root to current state.
                    while self.goto[failure][ch] == -1:
                        failure = self.fail[failure]
  
                    failure = self.goto[failure][ch]
                    self.fail[self.goto[state][ch]] = failure
  
                    # Merge output values
                    self.out[self.goto[state][ch]] |= self.out[failure]
  
                    # Insert the next level node (of Trie) in Queue
                    queue.append(self.goto[state][ch])
  
        return states
  
    # Returns the next state the machine will transition to using goto
    # and failure functions.
    # current_state - The current state of the machine. Must be between
    # 0 and the number of states - 1, inclusive.
    # next_input - The next character that enters into the machine.
  
    def __find_next_state(self, current_state, next_input):
        answer = current_state
        ch = ord(next_input) - 97  # Ascii value of 'a' is 97
  
        # If goto is not defined, use
        # failure function
        while self.goto[answer][ch] == -1:
            answer = self.fail[answer]
  
        return self.goto[answer][ch]
  
    # This function finds all occurrences of all words in text.
  
    def search_words(self, text):
        # Convert the text to lowercase to make search case insensitive
        text = text.lower()
  
        # Initialize current_state to 0
        current_state = 0
  
        # A dictionary to store the result.
        # Key here is the found word
        # Value is a list of all occurrences start index
        result = defaultdict(list)
  
        # Traverse the text through the built machine
        # to find all occurrences of words
        for i in range(len(text)):
            current_state = self.__find_next_state(current_state, text[i])
  
            # If match not found, move to next state
            if self.out[current_state] == 0:
                continue
  
            # Match found, store the word in result dictionary
            for j in range(len(self.words)):
                if (self.out[current_state] & (1 << j)) > 0:
                    word = self.words[j]
  
                    # Start index of word is (i-len(word)+1)
                    result[word].append(i-len(word)+1)
  
        # Return the final result dictionary
        return result
  
  
# Driver code
if __name__ == "__main__":
    words = ["he", "she", "hers", "his"]
    text = "ahishers"
  
    # Create an Object to initialize the Trie
    aho_chorasick = AhoCorasick(words)
  
    # Get the result
    result = aho_chorasick.search_words(text)
  
    # Print the result
    for word in result:
        for i in result[word]:
            print("Word", word, "appears from", i, "to", i + len(word)-1)


Javascript




const MAXS = 500;
const MAXC = 26;
  
let out = new Array(MAXS).fill(0);
let f = new Array(MAXS).fill(-1);
let g = Array.from(Array(MAXS), () => new Array(MAXC).fill(-1));
  
function buildMatchingMachine(arr, k) {
  out.fill(0);
  g.forEach(row => row.fill(-1));
  let states = 1;
  for (let i = 0; i < k; i++) {
    const word = arr[i];
    let currentState = 0;
    for (let j = 0; j < word.length; j++) {
      const ch = word.charCodeAt(j) - 'a'.charCodeAt(0);
      if (g[currentState][ch] === -1) g[currentState][ch] = states++;
      currentState = g[currentState][ch];
    }
    out[currentState] |= 1 << i;
  }
  for (let ch = 0; ch < MAXC; ch++) {
    if (g[0][ch] === -1) g[0][ch] = 0;
  }
  f.fill(-1);
  const q = [];
  for (let ch = 0; ch < MAXC; ch++) {
    if (g[0][ch] !== 0) {
      f[g[0][ch]] = 0;
      q.push(g[0][ch]);
    }
  }
  while (q.length) {
    const state = q.shift();
    for (let ch = 0; ch < MAXC; ch++) {
      if (g[state][ch] !== -1) {
        let failure = f[state];
        while (g[failure][ch] === -1) failure = f[failure];
        failure = g[failure][ch];
        f[g[state][ch]] = failure;
        out[g[state][ch]] |= out[failure];
        q.push(g[state][ch]);
      }
    }
  }
  return states;
}
  
function searchWords(arr, k, text) {
  buildMatchingMachine(arr, k);
  let currentState = 0;
  for (let i = 0; i < text.length; i++) {
    const ch = text.charCodeAt(i) - 'a'.charCodeAt(0);
    while (g[currentState][ch] === -1) currentState = f[currentState];
    currentState = g[currentState][ch];
    if (out[currentState] === 0) continue;
    for (let j = 0; j < k; j++) {
      if (out[currentState] & (1 << j)) {
        console.log(`Word ${arr[j]} appears from ${i - arr[j].length + 1} to ${i}`);
      }
    }
  }
}
  
// Driver code
const arr = ["he", "she", "hers", "his"];
const k = arr.length;
const text = "ahishers";
searchWords(arr, k, text);


Output

Word his appears from 1 to 3
Word he appears from 4 to 5
Word she appears from 3 to 5
Word hers appears from 4 to 7

Time Complexity: O(n + l + z), where ‘n’ is the length of the text, ‘l’ is the length of keywords, and ‘z’ is the number of matches.
Auxiliary Space: O(l * q), where ‘q’ is the length of the alphabet since that is the maximum number of children a node can have.



Introduction to Pattern Searching – Data Structure and Algorithm Tutorial

Pattern searching is an algorithm that involves searching for patterns such as strings, words, images, etc.

We use certain algorithms to do the search process. The complexity of pattern searching varies from algorithm to algorithm. They are very useful when performing a search in a database. The Pattern Searching algorithm is useful for finding patterns in substrings of larger strings. This process can be accomplished using a variety of algorithms that we are going to discuss in this blog. 

Introduction to Pattern Searching – Data Structure and Algorithm Tutorial

Similar Reads

Features of Pattern Searching Algorithm:

Pattern searching algorithms should recognize familiar patterns quickly and accurately. Recognize and classify unfamiliar patterns. Identify patterns even when partly hidden. Recognize patterns quickly with ease, and with automaticity....

Naive Pattern Searching algorithm

Naive pattern searching is the simplest method among other pattern-searching algorithms. It checks for all characters of the main string to the pattern. This algorithm is helpful for smaller texts. It does not need any pre-processing phases. We can find the substring by checking once for the string. It also does not occupy extra space to perform the operation....

KMP algorithm

...

Rabin Karp algorithm:

...

Z algorithm:

...

Aho-Corasick algorithm:

...

Contact Us