Columnar Transposition Cipher

Given a plain-text message and a numeric key, cipher/de-cipher the given text using Columnar Transposition Cipher The Columnar Transposition Cipher is a form of transposition cipher just like Rail Fence Cipher. Columnar Transposition involves writing the plaintext out in rows, and then reading the ciphertext off in columns one by one.

Examples:

Encryption
Input : Beginner for Beginner
Key = HACK
Output : e  kefGsGsrekoe_
Decryption
Input : e  kefGsGsrekoe_
Key = HACK
Output : Beginner for Beginner 
Encryption
Input :  Beginner on work
Key = HACK
Output : e w_eoo_Gs kknr_
Decryption
Input : e w_eoo_Gs kknr_
Key = HACK
Output : Beginner on work

Encryption

In a transposition cipher, the order of the alphabets is re-arranged to obtain the cipher-text.

  1. The message is written out in rows of a fixed length, and then read out again column by column, and the columns are chosen in some scrambled order.
  2. Width of the rows and the permutation of the columns are usually defined by a keyword.
  3. For example, the word HACK is of length 4 (so the rows are of length 4), and the permutation is defined by the alphabetical order of the letters in the keyword. In this case, the order would be “3 1 2 4”.
  4. Any spare spaces are filled with nulls or left blank or placed by a character (Example: _).
  5. Finally, the message is read off in columns, in the order specified by the keyword.

Decryption

  1. To decipher it, the recipient has to work out the column lengths by dividing the message length by the key length.
  2. Then, write the message out in columns again, then re-order the columns by reforming the key word.
C++
// CPP program for illustrating
// Columnar Transposition Cipher
#include <bits/stdc++.h>
using namespace std;

// Encription function
string Encryption(int no_rows, int len_key, int len_msg,
                  string msg, int col_val[])
{
    int x = 0;
    char enc_mat[no_rows + 1][len_key];
    // creating the matrix
    for (int i = 0; i < no_rows + 1; i++) {
        for (int j = 0; j < len_key; j++) {
            // initializes the positions with '_' after the
            // end of message
            if (x >= len_msg) {
                enc_mat[i][j] = '_';
            }
            else {
                enc_mat[i][j] = msg[x];
            }
            x++;
        }
    }

    int t = 1;
    string cipher = "";
    // finding the cipher text according to the value of
    // col_val matrix
    while (t <= len_key) {
        for (int i = 0; i < len_key; i++) {
            int k = col_val[i];
            if (k == t) {
                for (int j = 0; j < no_rows + 1; j++) {
                    cipher += enc_mat[j][i];
                }
                t++;
            }
        }
    }
    return cipher;
}

// decryption function
string Decryption(int no_rows, int len_key, string cipher,
                  int col_val[])
{
    char dec_mat[no_rows + 1][len_key];
    int x = 0, t = 1;
    // rearrange the matrix according to the col_val
    while (t <= len_key) {
        for (int i = 0; i < len_key; i++) {
            int k = col_val[i];
            if (k == t) {
                for (int j = 0; j < no_rows + 1; j++) {
                    dec_mat[j][i] = cipher[x];
                    x++;
                }
                t++;
            }
        }
    }

    string message = "";
    for (int i = 0; i < no_rows + 1; i++) {
        for (int j = 0; j < len_key; j++) {
            // replacing the '_' with space
            if (dec_mat[i][j] == '_') {
                dec_mat[i][j] = ' ';
            }
            message += dec_mat[i][j];
        }
    }
    return message;
}

int main()
{
    // message
    string msg = "Beginner for Beginner";
    // key
    string key = "HACK";

    int len_key = key.length();
    int len_msg = msg.length();

    int val = 1, count = 0, ind;

    int col_val[len_key];
    // intializing col_val matrix with 0
    memset(col_val, 0, sizeof(col_val));
    // numbering the key alphabets according to its ACII
    // value
    while (count < len_key) {
        int min = 999;
        for (int i = 0; i < len_key; i++) {
            if ((min > int(key[i])) && (col_val[i] == 0)) {
                min = int(key[i]);
                ind = i;
            }
        }
        col_val[ind] = val;
        count++;
        val++;
    }

    int no_rows = len_msg / len_key;
    // encrypted text
    string cipher_text = " ";
    cipher_text = Encryption(no_rows, len_key, len_msg, msg,
                             col_val);
    cout << "Encrypted Message : " << cipher_text << endl;
    // decrypted text
    string original_msg = " ";
    original_msg = Decryption(no_rows, len_key, cipher_text,
                              col_val);
    cout << "Decrypted Message : " << original_msg << endl;
}

// This code is contributed by Suchita Gond
Java
import java.util.*;

public class ColumnarTranspositionCipher {
    // Key for Columnar Transposition
    static final String key = "HACK";
    static Map<Character, Integer> keyMap = new HashMap<>();

    static void setPermutationOrder() {
        // Add the permutation order into the map
        for (int i = 0; i < key.length(); i++) {
            keyMap.put(key.charAt(i), i);
        }
    }

    // Encryption
    static String encryptMessage(String msg) {
        int row, col;
        StringBuilder cipher = new StringBuilder();

        /* Calculate the number of columns in the matrix */
        col = key.length();

        /* Calculate the maximum number of rows in the matrix */
        row = (int) Math.ceil((double) msg.length() / col);

        char[][] matrix = new char[row][col];

        for (int i = 0, k = 0; i < row; i++) {
            for (int j = 0; j < col; ) {
                if (k < msg.length()) {
                    char ch = msg.charAt(k);
                    if (Character.isLetter(ch) || ch == ' ') {
                        matrix[i][j] = ch;
                        j++;
                    }
                    k++;
                } else {
                    /* Add padding character '_' */
                    matrix[i][j] = '_';
                    j++;
                }
            }
        }

        for (Map.Entry<Character, Integer> entry : keyMap.entrySet()) {
            int columnIndex = entry.getValue();

            // Get the cipher text from the matrix column-wise using the permuted key
            for (int i = 0; i < row; i++) {
                if (Character.isLetter(matrix[i][columnIndex]) || matrix[i][columnIndex] == ' ' || matrix[i][columnIndex] == '_') {
                    cipher.append(matrix[i][columnIndex]);
                }
            }
        }

        return cipher.toString();
    }

    // Decryption
    static String decryptMessage(String cipher) {
        /* Calculate the number of columns for the cipher matrix */
        int col = key.length();

        int row = (int) Math.ceil((double) cipher.length() / col);
        char[][] cipherMat = new char[row][col];

        /* Add characters into the matrix column-wise */
        int k = 0;
        for (int j = 0; j < col; j++) {
            for (int i = 0; i < row; i++) {
                cipherMat[i][j] = cipher.charAt(k);
                k++;
            }
        }

        /* Update the order of the key for decryption */
        int index = 0;
        for (Map.Entry<Character, Integer> entry : keyMap.entrySet()) {
            entry.setValue(index++);
        }

        /* Arrange the matrix column-wise according to the permutation order */
        char[][] decCipher = new char[row][col];
        for (int l = 0; l < key.length(); l++) {
            int columnIndex = keyMap.get(key.charAt(l));
            for (int i = 0; i < row; i++) {
                decCipher[i][l] = cipherMat[i][columnIndex];
            }
        }

        /* Get the message using the matrix */
        StringBuilder msg = new StringBuilder();
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {
                if (decCipher[i][j] != '_') {
                    msg.append(decCipher[i][j]);
                }
            }
        }

        return msg.toString();
    }

    public static void main(String[] args) {
        /* Message */
        String msg = "Beginner for Beginner";

        setPermutationOrder();

        // Calling encryption function
        String cipher = encryptMessage(msg);
        System.out.println("Encrypted Message: " + cipher);

        // Calling Decryption function
        System.out.println("Decrypted Message: " + decryptMessage(cipher));
    }
}
Python
# Python3 implementation of
# Columnar Transposition
import math

key = "HACK"

# Encryption


def encryptMessage(msg):
    cipher = ""

    # track key indices
    k_indx = 0

    msg_len = float(len(msg))
    msg_lst = list(msg)
    key_lst = sorted(list(key))

    # calculate column of the matrix
    col = len(key)

    # calculate maximum row of the matrix
    row = int(math.ceil(msg_len / col))

    # add the padding character '_' in empty
    # the empty cell of the matix
    fill_null = int((row * col) - msg_len)
    msg_lst.extend('_' * fill_null)

    # create Matrix and insert message and
    # padding characters row-wise
    matrix = [msg_lst[i: i + col]
              for i in range(0, len(msg_lst), col)]

    # read matrix column-wise using key
    for _ in range(col):
        curr_idx = key.index(key_lst[k_indx])
        cipher += ''.join([row[curr_idx]
                           for row in matrix])
        k_indx += 1

    return cipher

# Decryption


def decryptMessage(cipher):
    msg = ""

    # track key indices
    k_indx = 0

    # track msg indices
    msg_indx = 0
    msg_len = float(len(cipher))
    msg_lst = list(cipher)

    # calculate column of the matrix
    col = len(key)

    # calculate maximum row of the matrix
    row = int(math.ceil(msg_len / col))

    # convert key into list and sort
    # alphabetically so we can access
    # each character by its alphabetical position.
    key_lst = sorted(list(key))

    # create an empty matrix to
    # store deciphered message
    dec_cipher = []
    for _ in range(row):
        dec_cipher += [[None] * col]

    # Arrange the matrix column wise according
    # to permutation order by adding into new matrix
    for _ in range(col):
        curr_idx = key.index(key_lst[k_indx])

        for j in range(row):
            dec_cipher[j][curr_idx] = msg_lst[msg_indx]
            msg_indx += 1
        k_indx += 1

    # convert decrypted msg matrix into a string
    try:
        msg = ''.join(sum(dec_cipher, []))
    except TypeError:
        raise TypeError("This program cannot",
                        "handle repeating words.")

    null_count = msg.count('_')

    if null_count > 0:
        return msg[: -null_count]

    return msg


# Driver Code
msg = "Beginner for Beginner"

cipher = encryptMessage(msg)
print("Encrypted Message: {}".
      format(cipher))

print("Decryped Message: {}".
      format(decryptMessage(cipher)))

# This code is contributed by Aditya K
C#
using System;
using System.Collections.Generic;

public class ColumnarTranspositionCipher {
    // Key for Columnar Transposition
    static readonly string key = "HACK";
    static Dictionary<char, int> keyMap
        = new Dictionary<char, int>();

    static void SetPermutationOrder()
    {
        // Add the permutation order into the dictionary
        for (int i = 0; i < key.Length; i++) {
            keyMap[key[i]] = i;
        }
    }

    // Encryption
    static string EncryptMessage(string msg)
    {
        int row, col;
        System.Text.StringBuilder cipher
            = new System.Text.StringBuilder();

        /* Calculate the number of columns in the matrix */
        col = key.Length;

        /* Calculate the maximum number of rows in the
         * matrix */
        row = (int)Math.Ceiling((double)msg.Length / col);

        char[, ] matrix = new char[row, col];

        for (int i = 0, k = 0; i < row; i++) {
            for (int j = 0; j < col;) {
                if (k < msg.Length) {
                    char ch = msg[k];
                    if (char.IsLetter(ch) || ch == ' ') {
                        matrix[i, j] = ch;
                        j++;
                    }
                    k++;
                }
                else {
                    /* Add padding character '_' */
                    matrix[i, j] = '_';
                    j++;
                }
            }
        }

        foreach(
            var entry in new Dictionary<char, int>(keyMap))
        {
            int columnIndex = entry.Value;

            // Get the cipher text from the matrix
            // column-wise using the permuted key
            for (int i = 0; i < row; i++) {
                if (char.IsLetter(matrix[i, columnIndex])
                    || matrix[i, columnIndex] == ' '
                    || matrix[i, columnIndex] == '_') {
                    cipher.Append(matrix[i, columnIndex]);
                }
            }
        }

        return cipher.ToString();
    }

    // Decryption
    static string DecryptMessage(string cipher)
    {
        /* Calculate the number of columns for the cipher
         * matrix */
        int col = key.Length;

        int row = (int)Math.Ceiling((double)cipher.Length
                                    / col);
        char[, ] cipherMat = new char[row, col];

        /* Add characters into the matrix column-wise */
        int k = 0;
        for (int j = 0; j < col; j++) {
            for (int i = 0; i < row; i++) {
                cipherMat[i, j] = cipher[k];
                k++;
            }
        }

        /* Update the order of the key for decryption */
        int index = 0;
        foreach(
            var entry in new Dictionary<char, int>(keyMap))
        {
            keyMap[entry.Key] = index++;
        }

        /* Arrange the matrix column-wise according to the
         * permutation order */
        char[, ] decCipher = new char[row, col];
        foreach(var entry in keyMap)
        {
            int columnIndex = entry.Value;
            for (int i = 0; i < row; i++) {
                decCipher[i, columnIndex]
                    = cipherMat[i, columnIndex];
            }
        }

        /* Get the message using the matrix */
        System.Text.StringBuilder msg
            = new System.Text.StringBuilder();
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {
                if (decCipher[i, j] != '_') {
                    msg.Append(decCipher[i, j]);
                }
            }
        }

        return msg.ToString();
    }

    public static void Main(string[] args)
    {
        /* Message */
        string msg = "Beginner for Beginner";

        SetPermutationOrder();

        // Calling encryption function
        string cipher = EncryptMessage(msg);
        Console.WriteLine("Encrypted Message: " + cipher);

        // Calling Decryption function
        Console.WriteLine("Decrypted Message: "
                          + DecryptMessage(cipher));
    }
}
JavaScript
// JavaScript implementation of 
// Columnar Transposition
const key = "HACK";

// Encryption
function encryptMessage(msg) {
    let cipher = "";

    // track key indices
    let k_indx = 0;

    const msg_len = msg.length;
    const msg_lst = Array.from(msg);
    const key_lst = Array.from(key).sort();

    // calculate column of the matrix
    const col = key.length;

    // calculate maximum row of the matrix
    const row = Math.ceil(msg_len / col);

    // add the padding character '_' in empty
    // the empty cell of the matrix
    const fill_null = (row * col) - msg_len;
    for (let i = 0; i < fill_null; i++) {
        msg_lst.push('_');
    }

    // create Matrix and insert message and
    // padding characters row-wise
    const matrix = [];
    for (let i = 0; i < msg_lst.length; i += col) {
        matrix.push(msg_lst.slice(i, i + col));
    }

    // read matrix column-wise using key
    for (let _ = 0; _ < col; _++) {
        const curr_idx = key.indexOf(key_lst[k_indx]);
        for (const row of matrix) {
            cipher += row[curr_idx];
        }
        k_indx++;
    }

    return cipher;
}

// Decryption
function decryptMessage(cipher) {
    let msg = "";

    // track key indices
    let k_indx = 0;

    // track msg indices
    let msg_indx = 0;
    const msg_len = cipher.length;
    const msg_lst = Array.from(cipher);

    // calculate column of the matrix
    const col = key.length;

    // calculate maximum row of the matrix
    const row = Math.ceil(msg_len / col);

    // convert key into list and sort 
    // alphabetically so we can access 
    // each character by its alphabetical position.
    const key_lst = Array.from(key).sort();

    // create an empty matrix to 
    // store deciphered message
    const dec_cipher = [];
    for (let i = 0; i < row; i++) {
        dec_cipher.push(Array(col).fill(null));
    }

    // Arrange the matrix column wise according 
    // to permutation order by adding into a new matrix
    for (let _ = 0; _ < col; _++) {
        const curr_idx = key.indexOf(key_lst[k_indx]);

        for (let j = 0; j < row; j++) {
            dec_cipher[j][curr_idx] = msg_lst[msg_indx];
            msg_indx++;
        }
        k_indx++;
    }

    // convert decrypted msg matrix into a string
    try {
        msg = dec_cipher.flat().join('');
    } catch (err) {
        throw new Error("This program cannot handle repeating words.");
    }

    const null_count = (msg.match(/_/g) || []).length;

    if (null_count > 0) {
        return msg.slice(0, -null_count);
    }

    return msg;
}

// Driver Code
const msg = "Beginner for Beginner";

const cipher = encryptMessage(msg);
console.log("Encrypted Message: " + cipher);

console.log("Decrypted Message: " + decryptMessage(cipher));

// This code is contributed by phasing17

Output
Encrypted Message : e  kefGsGsrekoe_
Decrypted Message : Beginner for Beginner 




Contact Us