XGBoost in R: How Does xgb.cv Pass the Optimal Parameters into xgb.train

XGBoost is a powerful gradient-boosting algorithm known for its efficiency and effectiveness in handling structured data. When tuning hyperparameters for an XGBoost model, cross-validation (CV) is commonly used to find the optimal combination of parameters. The xgb.cv function in R performs cross-validation to identify the best parameters, but how does it pass these optimal parameters into xgb. train for model training? This article aims to explain the process and provide insights into how xgb. cv optimizes hyperparameters and passes them to xgb. train.

What is xgb. cv?

xgb. cv is a function in the xgboost package that performs k-fold cross-validation to evaluate the performance of an XGBoost model and tune its hyperparameters. It systematically trains and evaluates multiple models using different combinations of hyperparameters to find the optimal set that maximizes a specified evaluation metric.

How Does xgb.cv Work?

  • Parameter Grid: xgb. cv defines a grid of hyperparameters to explore. This grid typically includes parameters like max_depth, learning_rate, subsample, and colsample_bytree.
  • Cross-Validation: The dataset is split into k folds, and for each combination of hyperparameters in the grid:
    • A model is trained on k-1 folds.
    • The performance is evaluated on the remaining fold.
    • This process is repeated for each fold, and the average performance across folds is calculated.
  • Optimization: xgb.cv identifies the set of hyperparameters that maximizes the specified evaluation metric (e.g., accuracy, AUC, RMSE).

Passing Optimal Parameters to xgb.train

Once the optimal parameters are identified, xgb.cv passes them to xgb.train for model training. But how does this transfer of parameters occur?

Specifying Optimal Parameters

The xgb.cv function returns a list of results, including the optimal set of hyperparameters found during cross-validation. These parameters can be extracted using the $best.params attribute.

R
library(xgboost)
library(Matrix)

data(iris)
iris$Species <- as.numeric(iris$Species) - 1
X <- as.matrix(iris[, -5])
y <- iris$Species
dtrain <- xgb.DMatrix(data = X, label = y)

Define Parameters and Perform Cross-Validation

Instead of providing a list of values directly in the params argument, define a set of parameters to test within the cross-validation loop.

R
# Set initial parameters
params <- list(
  objective = "multi:softprob",
  eval_metric = "mlogloss",
  num_class = 3
)

# Perform cross-validation
cv_results <- xgb.cv(
  params = params,
  data = dtrain,
  nfold = 5,
  nrounds = 100,
  early_stopping_rounds = 10,
  verbose = TRUE
)

Output:

[1]    train-mlogloss:0.738994+0.006730    test-mlogloss:0.749825+0.018149 
Multiple eval metrics are present. Will use test_mlogloss for early stopping.
Will train until test_mlogloss hasn't improved in 10 rounds.

[2] train-mlogloss:0.528526+0.009564 test-mlogloss:0.549305+0.032133
[3] train-mlogloss:0.391399+0.011049 test-mlogloss:0.420857+0.043757
[4] train-mlogloss:0.297514+0.010924 test-mlogloss:0.334201+0.053962
[5] train-mlogloss:0.230494+0.010313 test-mlogloss:0.275613+0.062684
[6] train-mlogloss:0.181601+0.010129 test-mlogloss:0.235692+0.070476
[7] train-mlogloss:0.144770+0.009516 test-mlogloss:0.208053+0.078296
[8] train-mlogloss:0.117297+0.009185 test-mlogloss:0.188952+0.084840
[9] train-mlogloss:0.096336+0.008522 test-mlogloss:0.176641+0.091872
[10] train-mlogloss:0.080486+0.007804 test-mlogloss:0.167870+0.097877

Passing Optimal Parameters to xgb.train

The optimal parameters are then passed as input to xgb.train when training the final model.

R
# Extract the Best Number of Rounds
best_nrounds <- cv_results$best_iteration
# Train the Final Model with Optimal Parameters
final_model <- xgb.train(
  params = params,
  data = dtrain,
  nrounds = best_nrounds
)
# Grid search for hyperparameter tuning
search_grid <- expand.grid(
  max_depth = c(3, 6),
  eta = c(0.01, 0.1),
  colsample_bytree = c(0.5, 0.7)
)

best_auc <- 0
best_params <- list()

for (i in 1:nrow(search_grid)) {
  params <- list(
    objective = "multi:softprob",
    eval_metric = "mlogloss",
    num_class = 3,
    max_depth = search_grid$max_depth[i],
    eta = search_grid$eta[i],
    colsample_bytree = search_grid$colsample_bytree[i]
  )
  
  cv_results <- xgb.cv(
    params = params,
    data = dtrain,
    nfold = 5,
    nrounds = 100,
    early_stopping_rounds = 10,
    verbose = TRUE
  )
  
  mean_auc <- max(cv_results$evaluation_log$test_mlogloss_mean)
  
  if (mean_auc > best_auc) {
    best_auc <- mean_auc
    best_params <- params
    best_nrounds <- cv_results$best_iteration
  }
}

# Train the final model with the best parameters
final_model <- xgb.train(
  params = best_params,
  data = dtrain,
  nrounds = best_nrounds
)

Output:

[1]    train-mlogloss:0.983851+0.006663    test-mlogloss:0.987265+0.009371 
Multiple eval metrics are present. Will use test_mlogloss for early stopping.
Will train until test_mlogloss hasn't improved in 10 rounds.

[2] train-mlogloss:0.878013+0.007136 test-mlogloss:0.884146+0.007905
[3] train-mlogloss:0.796634+0.015013 test-mlogloss:0.808550+0.021133
[4] train-mlogloss:0.717974+0.013423 test-mlogloss:0.736113+0.013818
[5] train-mlogloss:0.653546+0.016296 test-mlogloss:0.675885+0.017799
[6] train-mlogloss:0.596697+0.018427 test-mlogloss:0.622178+0.023205
[7] train-mlogloss:0.545010+0.015754 test-mlogloss:0.571462+0.020152
[8] train-mlogloss:0.497209+0.013964 test-mlogloss:0.525631+0.020119
[9] train-mlogloss:0.456389+0.015891 test-mlogloss:0.488164+0.016598
[10] train-mlogloss:0.417232+0.014707 test-mlogloss:0.452470+0.020607
[11] train-mlogloss:0.383913+0.017773 test-mlogloss:0.423728+0.021391
[12] train-mlogloss:0.352606+0.015181 test-mlogloss:0.396152+0.021836
[13] train-mlogloss:0.324013+0.013673 test-mlogloss:0.367447+0.022506
[14] train-mlogloss:0.299813+0.012686 test-mlogloss:0.343159+0.024509
[15] train-mlogloss:0.276713+0.011857 test-mlogloss:0.319813+0.025241
[16] train-mlogloss:0.256142+0.011000 test-mlogloss:0.301409+0.027859
[17] train-mlogloss:0.236637+0.010686 test-mlogloss:0.283405+0.029481
[18] train-mlogloss:0.219567+0.009666 test-mlogloss:0.268679+0.031260
[19] train-mlogloss:0.204322+0.009568 test-mlogloss:0.254008+0.032928
[20] train-mlogloss:0.190355+0.009219 test-mlogloss:0.243043+0.035494
[21] train-mlogloss:0.177822+0.008835 test-mlogloss:0.231704+0.037772
[22] train-mlogloss:0.166672+0.007838 test-mlogloss:0.222843+0.040372
[23] train-mlogloss:0.155972+0.007457 test-mlogloss:0.213581+0.043389
[24] train-mlogloss:0.146813+0.007017 test-mlogloss:0.206327+0.044050
[25] train-mlogloss:0.138563+0.006575 test-mlogloss:0.200042+0.044902
[26] train-mlogloss:0.130210+0.006502 test-mlogloss:0.193591+0.047043
[27] train-mlogloss:0.123683+0.006875 test-mlogloss:0.188267+0.047222
[28] train-mlogloss:0.116948+0.007335 test-mlogloss:0.184278+0.048900
[29] train-mlogloss:0.111106+0.007952 test-mlogloss:0.179855+0.050081
[30] train-mlogloss:0.105462+0.008591 test-mlogloss:0.175083+0.050175
[31] train-mlogloss:0.100460+0.008470 test-mlogloss:0.171258+0.049444
[32] train-mlogloss:0.095373+0.008036 test-mlogloss:0.166830+0.050722
[33] train-mlogloss:0.090179+0.007897 test-mlogloss:0.164154+0.052903
[34] train-mlogloss:0.086006+0.007739 test-mlogloss:0.162114+0.055078
[35] train-mlogloss:0.081960+0.007942 test-mlogloss:0.160610+0.057457
[36] train-mlogloss:0.078338+0.007718 test-mlogloss:0.159158+0.058757
[37] train-mlogloss:0.075079+0.007464 test-mlogloss:0.156747+0.059068
[38] train-mlogloss:0.072091+0.007289 test-mlogloss:0.155119+0.060228
[39] train-mlogloss:0.068796+0.007076 test-mlogloss:0.154012+0.061161
[40] train-mlogloss:0.066199+0.007249 test-mlogloss:0.153072+0.062036
[41] train-mlogloss:0.064103+0.007136 test-mlogloss:0.151745+0.062377
[42] train-mlogloss:0.061883+0.006879 test-mlogloss:0.150824+0.063542
[43] train-mlogloss:0.059500+0.006803 test-mlogloss:0.150588+0.065450
[44] train-mlogloss:0.057294+0.006589 test-mlogloss:0.149414+0.065131
[45] train-mlogloss:0.055483+0.006559 test-mlogloss:0.148611+0.065323
[46] train-mlogloss:0.053759+0.006323 test-mlogloss:0.147631+0.065561
[47] train-mlogloss:0.052255+0.006161 test-mlogloss:0.147121+0.066141
[48] train-mlogloss:0.050774+0.006213 test-mlogloss:0.146550+0.066843
[49] train-mlogloss:0.049445+0.006151 test-mlogloss:0.146102+0.066932
[50] train-mlogloss:0.048066+0.006018 test-mlogloss:0.145531+0.066973
[51] train-mlogloss:0.046986+0.005957 test-mlogloss:0.144657+0.066806
[52] train-mlogloss:0.045785+0.005850 test-mlogloss:0.145033+0.067564
[53] train-mlogloss:0.044669+0.005634 test-mlogloss:0.143860+0.067970
[54] train-mlogloss:0.043621+0.005608 test-mlogloss:0.143428+0.068309
[55] train-mlogloss:0.042637+0.005325 test-mlogloss:0.142644+0.068432
[56] train-mlogloss:0.041743+0.005417 test-mlogloss:0.142826+0.068745
[57] train-mlogloss:0.040911+0.005341 test-mlogloss:0.143199+0.068868
[58] train-mlogloss:0.039920+0.005289 test-mlogloss:0.143989+0.069813
[59] train-mlogloss:0.039135+0.005177 test-mlogloss:0.144111+0.070286
[60] train-mlogloss:0.038332+0.005010 test-mlogloss:0.143885+0.070162
[61] train-mlogloss:0.037630+0.004899 test-mlogloss:0.144392+0.070564
[62] train-mlogloss:0.036975+0.004718 test-mlogloss:0.144930+0.071065
[63] train-mlogloss:0.036509+0.004567 test-mlogloss:0.145638+0.071851
[64] train-mlogloss:0.036061+0.004484 test-mlogloss:0.145488+0.072193
[65] train-mlogloss:0.035611+0.004447 test-mlogloss:0.146268+0.072840
Stopping. Best iteration:
[55] train-mlogloss:0.042637+0.005325 test-mlogloss:0.142644+0.068432
  1. Define Initial Parameters: Specify the fixed parameters and set up the xgb.cv function.
  2. Perform Cross-Validation: Use xgb.cv to determine the best number of rounds.
  3. Hyperparameter Tuning: Implement a grid search loop to find the optimal hyperparameters.
  4. Train Final Model: Use xgb.train with the optimal parameters and number of rounds.

By following these steps, you can efficiently perform cross-validation, tune hyperparameters, and train an optimized XGBoost model in R.

Conclusion

xgb.cv in R is a powerful tool for tuning hyperparameters and optimizing XGBoost models using cross-validation. By systematically evaluating different combinations of parameters and identifying the optimal set, xgb.cv helps improve model performance and generalization.

Once the optimal parameters are determined, they are passed into xgb.train for model training. This seamless transfer ensures that the final model is trained with the best hyperparameters, resulting in improved predictive accuracy and robustness. Understanding the workflow of xgb.cv and how it passes optimal parameters to xgb.train is essential for effectively tuning XGBoost models and building high-performance machine learning solutions in R.



Contact Us