Fourier Series Solved Examples

Example 1: Find the Fourier series expansion of the function f(x) = ex, within the limits  [– π, π].

Solution:

Using Fourier series expansion.

[Tex]a_0 =  \dfrac{1}{2\pi}\int_{- \pi}^{\pi}e^x dx \\= \dfrac{e^\pi – e^{-\pi}}{2\pi} [/Tex] .

[Tex]a_n = \dfrac{1}{\pi}\int_{- \pi}^{\pi}e^x cos (nx) dx \\= \dfrac{1}{\pi}\dfrac{e^x}{1+n^2}[\cos(nx)+ n\sin(nx)]_{-\pi}^{\pi}\\= \dfrac{1}{\pi(1+n^2)}[e^\pi(-1)^n)-e^{-\pi}(-1)^n)] [/Tex] .

[Tex]b_n = \dfrac{1}{\pi}\int e^x sin(nx) dx \\= \dfrac{e^x}{\pi (1+n^2)}[\sin(nx)- n \cos(nx)]_{-\pi}^{\pi}\\= \dfrac{1}{\pi (1+n^2)}[e^\pi(-n(-1)^n) – e^{-\pi}(-n)(-1)^n] [/Tex] .

The Fourier series for this function is given as, 

[Tex]\dfrac{e^\pi -e^{-\pi}}{2\pi} + \sum_{n=1}^{\infty}\dfrac{(-1)^n(e^\pi – e^{-\pi})}{\pi(1+n^2)}[cos nx -n sin nx] [/Tex] .

Example 2: Find the Fourier series expansion of the function f(x) = x , within the limits  [– 1, 1].

Solution:

From Fourier series expansion. Here,

[Tex]A_{0}=\frac{1}{2 } \cdot \int_{-1}^{1} x d x [/Tex] .

[Tex]A_{n}=\frac{1}{1} \cdot \int_{-1}^{1} x \cos \left(\frac{n \pi x}{1}\right) d x, \quad n>0 [/Tex] .

[Tex]B_{n}=\frac{1}{1} \cdot \int_{-1}^{1} x \sin \left(\frac{n \pi x}{1}\right) d x, \quad n>0 [/Tex] .

[Tex]f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cdot \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} B_{n} \cdot \sin \left(\frac{n \pi x}{L}\right) [/Tex] .

[Tex]\mathrm{f}(\mathrm{x})=\frac{1}{2 \cdot 1} \cdot \int_{-1}^{1}\left(x\right) d x+\sum_{n=1}^{\infty} \frac{1}{1} \cdot \int_{-1}^{1}\left(x\right) \cos \left(\frac{n \pi x}{1}\right) d x \cdot \cos \left(\frac{n \pi x}{1}\right)+\sum_{n=1}^{\infty} \frac{1}{1} \cdot \int_{-1}^{1}\left(x\right) \sin \left(\frac{n \pi x}{1}\right) d x \cdot \sin \left(\frac{n \pi x}{1}\right) [/Tex] .

Om solving the integrals we get even functions and one odd function. Therefore,

[Tex]f(x) = \sum _{n=1}^{\infty \:}-\frac{2\left(-1\right)^n\sin \left(\pi nx\right)}{\pi n} [/Tex].

Example 3: Suppose a function f(x) = tanx find its Fourier expansion within the limits [-π, π].

Solution:

[Tex] a_0 =  \dfrac{1}{\pi}\int_{- \pi}^{\pi} tanx dx     [/Tex]

[Tex]a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} tanx cosnxdx    [/Tex] 

[Tex]b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} tanx sinnxdx    [/Tex] 

[Tex]\large f(x)=\frac{1}{2}a_{0}+\sum_{n=1}^{\infty}a_{n}cos\;nx+\sum_{n=1}^{\infty}b_{n}sin\;nx    [/Tex]   

Now the integral of tanx⋅sinnx and tanx⋅cosnx cannot be found.

Therefore the Fourier series for this function f(x) = tanx is undefined.

Example 4: Find the Fourier series of the function f(x) = 1 for limits  [– π, π] .

Solution:

Comparing with general Fourier series expansion we get,

[Tex] a_0 =  \dfrac{1}{\pi}\int_{- \pi}^{\pi}1  dx    [/Tex] 

[Tex]a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot cosnxdx    [/Tex] 

[Tex]b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot sinnxdx .\\ \large f(x)=\frac{1}{2}a_{0}+\sum_{n=1}^{\infty}a_{n}cos\;nx+\sum_{n=1}^{\infty}b_{n}sin\;nx    [/Tex]  

f(x) = π + 0 + 0

f(x) = π

Example 5: Consider a function f(x) = x2 for the limits  [– π, π]. Find its Fourier series expansion.

Solution:

Comparing with general Fourier series expansion we get,

[Tex] a_0 =  \dfrac{1}{\pi}\int_{- \pi}^{\pi}x^2  dx . \\ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cdot cosnxdx . \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cdot sinnxdx . \\ \large f(x)=\frac{1}{2}a_{0}+\sum_{n=1}^{\infty}a_{n}cos\;nx+\sum_{n=1}^{\infty}b_{n}sin\;nx \\ f(x) = \frac{{\pi}^{3}}{3} + \sum_{n=1}^{\infty}a_{n}cos\;nx +0 .\\ f(x) =  \frac{{\pi}^{3}}{3} + \sum_{n=1}^{\infty} \frac{4πcosnπcosnx}{n2}. [/Tex]

Example 6: Find Fourier series expansion of the function f(x) = 4-3x for the limits  [– 1, 1].

Solution:

Comparing with general Fourier series expansion we get,

[Tex]a_0 =  \dfrac{1}{\pi}\int_{- \pi}^{\pi}4-3x  dx . \\ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} 4-3x \cdot cosnxdx . \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} 4 -3x\cdot sinnxdx .\\ \large f(x)=\frac{1}{2}a_{0}+\sum_{n=1}^{\infty}a_{n}cos\;nx+\sum_{n=1}^{\infty}b_{n}sin\;nx .\\ f(x) =\frac{1}{2\cdot \:1}\cdot \:8+\sum _{n=1}^{\infty \:}\frac{1}{1}\cdot \:0\cdot \cos \left(\frac{n\pi x}{1}\right)+\sum _{n=1}^{\infty \:}\frac{1}{1}\left(\frac{6\left(-1\right)^n}{\pi n}\right)\sin \left(\frac{n\pi x}{1}\right).\\ f(x) = 4+\sum _{n=1}^{\infty \:}\frac{6\left(-1\right)^n\sin \left(\pi nx\right)}{\pi n} . [/Tex]

Example 7: Find the expansion of the function [Tex]1- \frac{x}{\pi} [/Tex]. For the limits  [– π, π].

Solution:

Comparing with general Fourier series expansion we get,

[Tex]a_0 =  \dfrac{1}{\pi}\int_{- \pi}^{\pi}4-3x  dx .\\ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} 4-3x \cdot cosnxdx .\\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} 4 -3x\cdot sinnxdx .\\ f(x) = \frac{1}{2\pi }\cdot \int _{-\pi }^{\pi }\left(1-\frac{x}{\pi }\right)dx+\sum _{n=1}^{\infty \:}\frac{1}{\pi }\cdot \int _{-\pi }^{\pi }\left(1-\frac{x}{\pi }\right)\cos \left(\frac{n\pi x}{\pi }\right)dx\cdot \cos \left(\frac{n\pi x}{\pi }\right)+\sum _{n=1}^{\infty \:}\frac{1}{\pi }\cdot \int _{-\pi }^{\pi }\left(1-\frac{x}{\pi }\right)\sin \left(\frac{n\pi x}{\pi }\right)dx\cdot \sin \left(\frac{n\pi x}{\pi }\right) .\\ f(x) = =\frac{1}{2\pi }\cdot \:2\pi +\sum _{n=1}^{\infty \:}\frac{1}{\pi }\cdot \:0\cdot \cos \left(\frac{n\pi x}{\pi }\right)+\sum _{n=1}^{\infty \:}\frac{1}{\pi }\left(\frac{2\left(-1\right)^n}{n}\right)\sin \left(\frac{n\pi x}{\pi }\right).\\ f(x) = =1+\sum _{n=1}^{\infty \:}\frac{2\left(-1\right)^n\sin \left(nx\right)}{\pi n} . [/Tex]

Fourier Series Formula

Fourier Series is a sum of sine and cosine waves that represents a periodic function. Each wave in the sum, or harmonic, has a frequency that is an integral multiple of the periodic function’s fundamental frequency. Harmonic analysis may be used to identify the phase and amplitude of each harmonic. A Fourier series might have an unlimited number of harmonics. Summing some, but not all, of the harmonics in a function’s Fourier series, yields an approximation to that function. For example, a square wave can be approximated by utilizing the first few harmonics of the Fourier series.

In this article, we will learn about Fourier Series, Fourier Series Formula, Fourier Series Examples, and others in detail.

Table of Content

  • What is Fourier Series?
  • Fourier Series Formulas
  • Exponential form of Fourier Series
  • Conditions for Fourier series
  • Applications of Fourier Series
  • Solved Examples

Similar Reads

What is Fourier Series?

Fourier Series is the expansion of a periodic function in terms of the infinite sum of sines and cosines. Periodic functions often appear in problems in higher mathematics. A way of dealing with these issues is to represent them in terms of basic periodic functions, which have a small range and can have a domain of all real numbers, such as sine and cosine; this leads us to the Fourier series (FS). The Fourier series is a particularly useful tool for dealing with situations involving partial differential equations....

Fourier Series Formulas

For any function f(x) with period 2L, the formula of Fourier Series is given as,...

Exponential form of Fourier Series

From the equation above, [Tex]f(x)=\begin{array}{l}\frac{1}{2} a_{o}+ \sum_{ n=1}^{\infty}a_{n}\;cos\frac{n\pi x}{L}+b_{n}\; sin\frac{n\pi x}{L}\end{array}   [/Tex] . Now according to Euler’s formula, eiθ= cosθ +isinθ Using this f(x) = [Tex]\sum_{n=-\infty}^{\infty}   [/Tex] Cneinx. Here Cn is called decomposition coefficient and is calculated as, [Tex]C_n = \frac{1}{2T} \int_{-T}^{T}e^{{-in}\frac{\pi t}{T} }f(t) [/Tex] ....

Conditions for Fourier series

Suppose a function f(x) has a period of 2π and is integrable in a period [-π, π]. Now there are two conditions....

Applications of Fourier Series

Fourier Series has many applications in mathematical analysis it is one of the most important series that is used to find the expansion of the periodic function in a closed interval. Some of its application are,...

Fourier Series Solved Examples

Example 1: Find the Fourier series expansion of the function f(x) = ex, within the limits  [– π, π]....

Fourier Series – FAQs

Define Fourier Series...

Contact Us