Examples on Methods to Find Rank of a Matrix

Example 1: Find the rank of the matrix A = [Tex]\begin {bmatrix} 4 & 5\\ 0 & 2 \end {bmatrix}[/Tex] using minor method

Solution:

First, find the determinant of the give 2 Γ— 2 matrix.

|A| = [Tex]\begin {vmatrix} 4 & 5\\ 0 & 2 \end {vmatrix}[/Tex]

|A| = (4 Γ— 2) – (0 Γ— 5)

|A| = 8 – 0

|A| = 8

Since, determinant of A is not equal to zero.

Rank of A = Order of matrix A

R(A) = 2

Example 2: Find the rank of the matrix B = [Tex]\begin {bmatrix} 3 & 6\\ 1 & 2 \end {bmatrix}[/Tex] using Echelon method

Solution:

First, find the Echelon form of matrix B by using row operation.

B = [Tex]\begin {bmatrix} 3 & 6\\ 1 & 2 \end {bmatrix}[/Tex]

R1 β†’ R1 / 3

B = [Tex]\begin {bmatrix} 1 & 2\\ 1 & 2 \end {bmatrix}[/Tex]

R2 β†’ R2 – R1

B = [Tex]\begin {bmatrix} 1 & 2\\ 0 & 0 \end {bmatrix}[/Tex]

The above matrix represents the Echelon form of matrix B.

Now, find the number of non-zero rows i.e., = 2

Rank of matrix B = R(B) = 2

Example 3: Find the rank of the matrix X = [Tex]\begin {bmatrix} 1 & 6 & 4\\ 1 & 3 & 2\\ 1 & 12& 8 \end {bmatrix}[/Tex] using minor method

Solution:

First find the determinant of the matrix.

|X| = [Tex]\begin {vmatrix} 1 & 6 & 4\\ 1 & 3 & 2\\ 1 & 12& 8 \end {vmatrix}[/Tex]

|X| = 1 [(3 Γ— 8) – (12 Γ— 2)] – 6[(8 Γ— 1) – (2Γ— 0)] + 4[(12Γ— 1) – (3Γ— 0)]

|X| = [24 – 24] – 6Γ— 8 + 4Γ—12

|X| = 0 – 48 + 48 = 0

Since, |X| = 0 then we find at least one non-zero 2 Γ— 2 minor.

Minor of A = [Tex]\begin {vmatrix} 1 & 6\\ 1 & 3 \end {vmatrix}[/Tex]

|Minor of A| = 3 – 6 = -3 β‰  0

Therefore, rank of matrix X = 2 (order of minor)

Example 4: Find the rank of the matrix D = [Tex] \begin {bmatrix} 2 & 4 & 8\\ 1 & 0 & 0\\ 0 & 2& 3 \end {bmatrix} [/Tex] using Echelon method

Solution:

First convert matrix D into its Echelon form using elementary row operations.

D = [Tex] \begin {bmatrix} 2 & 4 & 8\\ 1 & 0 & 0\\ 0 & 2& 3 \end {bmatrix} [/Tex]

R1 β†’ R1 /2

D = [Tex] \begin {bmatrix} 1 & 2 & 4\\ 1 & 0 & 0\\ 0 & 2& 3 \end {bmatrix} [/Tex]

R2 β†’ R2 – R1

D = [Tex] \begin {bmatrix} 1 & 2 & 4\\ 0 & -2 & -4\\ 0 & 2& 3 \end {bmatrix} [/Tex]

R1 β†’ R1 + R2, and R3 β†’R3 + R2

D = [Tex] \begin {bmatrix} 1 & 0 & 0\\ 0 & -2 & -4\\ 0 & 0& -1 \end {bmatrix} [/Tex]

R2 β†’ R2 / (-2), R3 β†’ R3/ (-1)

D = [Tex] \begin {bmatrix} 1 & 0 & 0\\ 0 & 1 & 2\\ 0 & 0& 1 \end {bmatrix} [/Tex]

The above matrix is Echelon form of matrix D.

Now, find the number of non-zero rows i.e., = 3

Rank of matrix D = 3

Example 5: Find the rank of the matrix G = [Tex] \begin {bmatrix} 1 & 2 & 1&0\\ 2 & 1 & 0&-1\\ -1 & -6 & -3 &0\\ 0 & 4 & 5 & 6 \end {bmatrix} [/Tex] using the normal form method.

Solution:

First, find the normal form of matrix G using the elementary row and column operations.

G = [Tex] \begin {bmatrix} 1 & 2 & 1&0\\ 2 & 1 & 0&-1\\ -1 & -6 & -3 &0\\ 0 & 4 & 5 & 6 \end {bmatrix} [/Tex]

R2 β†’ R2 – 2R1 and R3β†’ R3 + R1

G = [Tex] \begin {bmatrix} 1 & 2 & 1&0\\ 0 & -3 & -2&-1\\ 0 & -4 & -2 &0\\ 0 & 4 & 5 & 6 \end {bmatrix} [/Tex]

R2 β†’ R2 / (-3)

G = [Tex] \begin {bmatrix} 1 & 2 & 1&0\\ 0 & 1 & 2/3&1/3\\ 0 & -4 & -2 &0\\ 0 & 4 & 5 & 6 \end {bmatrix} [/Tex]

R3 β†’ R3 + 4R2 and R4β†’ R4 – 4R2

G = [Tex] \begin {bmatrix} 1 & 2 & 1&0\\ 0 & 1 & 2/3&1/3\\ 0 & 0 & 2/3 &4/3\\ 0 & 0 & -2/3 & 14/3 \end {bmatrix} [/Tex]

R4 β†’ R4 + R3

G = [Tex] \begin {bmatrix} 1 & 2 & 1&0\\ 0 & 1 & 2/3&1/3\\ 0 & 0 & 2/3 &4/3\\ 0 & 0 & 0 & 6 \end {bmatrix} [/Tex]

R3 β†’ (3/2)R3 and R4 β†’ R4 /6

G = [Tex] \begin {bmatrix} 1 & 2 & 1&0\\ 0 & 1 & 2/3&1/3\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 1 \end {bmatrix} [/Tex]

C2 β†’ C2 – 2C1 and C3 β†’ C3 – C1

G = [Tex] \begin {bmatrix} 1 & 0 & 0&0\\ 0 & 1 & 2/3&1/3\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 1 \end {bmatrix} [/Tex]

C3 β†’ C3 – (2/3)C2 and C4 β†’ C4 – (1/3)C2

G = [Tex] \begin {bmatrix} 1 & 0 & 0&0\\ 0 & 1 & 0&0\\ 0 & 0 & 0 & 2\\ 0 & 0 & 0 & 1 \end {bmatrix} [/Tex]

C3 ↔ C4

G = [Tex] \begin {bmatrix} 1 & 0 & 0&0\\ 0 & 1 & 0&0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 1 & 0 \end {bmatrix} [/Tex]

R3 β†’ R3 / 2 and R4 β†’ R4 – R3

G = [Tex] \begin {bmatrix} 1 & 0 & 0&0\\ 0 & 1 & 0&0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 \end {bmatrix} [/Tex]

The above matrix is the normal form of matrix G i.e., [Tex]\begin {bmatrix} I_3 & 0\\ 0 & 0 \end {bmatrix}[/Tex]

So, the rank of matrix G = R(G) = 3

Methods to Find Rank of a Matrix

To find the rank of a matrix find the highest order of the non-zero minor within the matrix. Rank of a matrix in the number that represents the number of non-zeros rows or columns in the matrix. If the rank of the matrix is r then the matrix contains at least one minor with order r and the minors with order greater than r is zero. The second method to find the rank of matrix is by converting it into Echelon form.

In this article we will discuss methods to find rank of a matrix in depth along with the rank definition, methods to find rank of a matrix i.e., by minors and by Echelon form. Also, we will discuss the properties of rank and solve some examples including both the methods. Let’s start our learning on the topic β€œMethods to Find Rank of a Matrix. β€œ

Table of Content

  • What is Rank of a Matrix?
  • Methods to Find Rank of a Matrix
  • Examples
  • Practice Problems
  • FAQs

Similar Reads

What is Rank of a Matrix?

Rank of a matrix represents the number of equations that can be formed from the given matrix. Also, the rank of the matrix gives us the number of non-zero rows or columns and the rows or columns that are linearly independent....

Methods to Find Rank of a Matrix

The two methods to find the rank of the matrix are:...

Examples on Methods to Find Rank of a Matrix

Example 1: Find the rank of the matrix A = [Tex]\begin {bmatrix} 4 & 5\\ 0 & 2 \end {bmatrix}[/Tex] using minor method...

Practice Problems on Methods to Find Rank of a Matrix

Problem 1: Find the rank of the matrix A = [Tex]\begin {bmatrix} 10 & 5\\ 6 & 0 \end {bmatrix}[/Tex] using minor method....

FAQs on Methods to Find Rank of a Matrix

What is Rank of a Matrix?...

Contact Us