Examples of Rank of a Matrix

Example 1: Find the rank of matrix [Tex]\bold{\begin{bmatrix} -1 & -2 & -3\\ -4 & -5 & -6 \\ -7 & -8 & -7 \end{bmatrix}} [/Tex] using minor method.

Solution:

Given [Tex]A = \begin{bmatrix} -1 & -2 & -3\\ -4 & -5 & -6 \\ -7 & -8 & -7 \end{bmatrix} [/Tex]

Step 1: Calculate the determinant of A

det(A) = -1 (35 – 48) + 2 (28 – 42) – 3 (32 – 35)

det(A) = 13 – 28 – 9 = -24

As det(A) β‰  0, ρ(A) = order of A = 3

Example 2. Find the rank of matrix [Tex]\bold{\begin{bmatrix} 2 & 4 & 6\\ 8 & 10 & 12 \\ 14 & 16 & 0 \end{bmatrix}} [/Tex] using minor method.

Solution:

Given [Tex]A = \begin{bmatrix} 2 & 4 & 6\\ 8 & 10 & 12 \\ 14 & 16 & 0 \end{bmatrix} [/Tex]

Step 1: Calculate the determinant of A

det(A) = 2(0-192) – 4(0-168) + 6(128-140)

det(A) = -384 + 672 – 72 = 216

As det(A) β‰  0, ρ(A) = order of A = 3

Example 3. Find the rank of matrix [Tex]\bold{\begin{bmatrix} -1 & -2 & -3\\ -4 & -5 & -6 \\ -7 & -8 & -9 \end{bmatrix}} [/Tex] using Echelon form method.

Solution:

Given [Tex]A = \begin{bmatrix} -1 & -2 & -3\\ -4 & -5 & -6 \\ -7 & -8 & -9 \end{bmatrix} [/Tex]

Step 1: Convert A to echelon form

Apply R2 = R2 – 4R1

Apply R3 = R3 – 7R1

[Tex]A = \begin{bmatrix} -1 & -2 & -3\\ 0 & 3 & 6 \\ 0 & 6 & 12 \end{bmatrix} [/Tex]

Apply R3 = R3 – 2R2

[Tex]A = \begin{bmatrix} -1 & -2 & -3\\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix} [/Tex]

As matrix A is now in lower triangular form, it is in Echelon Form.

Step 2: Number of non-zero rows in A = 2. Thus ρ(A) = 2

Example 4. Find the rank of matrix [Tex]\bold{\begin{bmatrix} 2 & 4 & 6\\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix}} [/Tex] using Echelon form method.

Solution:

Given [Tex]A = \begin{bmatrix} 2 & 4 & 6\\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix} [/Tex]

Step 1: Convert A to echelon form

Apply R2 = R2 – 4R1

Apply R3 = R3 – 7R1

[Tex]A = \begin{bmatrix} 2 & 4 & 6\\ 0 & -6 & -12 \\ 0 & -12 & -24 \end{bmatrix} [/Tex]

Apply R3 = R3 – 2R2

[Tex]A = \begin{bmatrix} 2 & 4 & 6\\ 0 & -6 & -12 \\ 0 & 0 & 0 \end{bmatrix} [/Tex]

As matrix A is now in lower triangular form, it is in Echelon Form.

Step 2: Number of non-zero rows in A = 2. Thus ρ(A) = 2

Example 5. Find the rank of matrix [Tex]\bold{\begin{bmatrix} 2 & 4 & 2 & 4\\ 2 & 6 & 4 & 4 \\ 4 & 8 & 6 & 8 \\ 6 & 14 & 8 & 12 \end{bmatrix}} [/Tex] using normal form method.

Solution:

Given [Tex]A = \begin{bmatrix} 2 & 4 & 2 & 4\\ 2 & 6 & 4 & 4 \\ 4 & 8 & 6 & 8 \\ 6 & 14 & 8 & 12 \end{bmatrix} [/Tex]

Apply R2 = R2 – R1 , R3 = R3 – 2R1 and R4 = R4 – 3R1

[Tex]A = \begin{bmatrix} 2 & 4 & 2 & 4\\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix} [/Tex]

Apply R1 = R1 – 2R2 and R4 = R4 – R2

[Tex]A = \begin{bmatrix} 2 & 0 & -2 & 4\\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} [/Tex]

Apply R1 = R1 + R3 and R2 = R2 – R3

[Tex]A = \begin{bmatrix} 2 & 0 & 0 & 4\\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} [/Tex]

Apply C4 β†’ C4 – 2C1

[Tex]A = \begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} [/Tex]

Apply R1 = R1/2, R2 = R2/2, R3 = R3/2

[Tex]A = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} [/Tex]

Thus A can be written as [Tex]\begin{bmatrix} I_3 & 0\\ 0 & 0\\ \end{bmatrix} [/Tex]

Thus, ρ(A) = 3

Rank of a Matrix: Definition, Properties, and Formula

Rank of a Matrix is defined as the dimension of the vector space formed by its columns. Rank of a Matrix is a very important concept in the field of Linear Algebra, as it helps us to know if we can find a solution to the system of equations or not. Rank of a matrix also helps us know the dimensionality of its vector space.

This article explores, the concept of the Rank of a Matrix in detail including its definition, how to calculate the rank of the matrix as well as a nullity and its relation with rank. We will also learn how to solve some problems based on the rank of a matrix. So, let’s start with the definition of the rank of the matrix first.

Table of Content

  • What is Rank of Matrix?
  • How To Calculate Rank of a Matrix?
  • Properties of Rank of Matrix
  • Examples of Rank of a Matrix
  • FAQs

Similar Reads

What is Rank of Matrix?

Rank of a Matrix is a fundamental concept in Linear Algebra, which measures the maximum number of linearly independent rows or columns in any matrix. In other words, it tells you how many of the rows or columns of a matrix are not useful and contribute to the overall information or dimensionality of the matrix. Let’s define the Rank of a Matrix....

How To Calculate Rank of a Matrix?

There are 3 methods which can be used to get the rank of any given matrix. These methods are as follows:...

Properties of Rank of Matrix

Properties of rank of matrix is as follows:...

Examples of Rank of a Matrix

Example 1: Find the rank of matrix [Tex]\bold{\begin{bmatrix} -1 & -2 & -3\\ -4 & -5 & -6 \\ -7 & -8 & -7 \end{bmatrix}} [/Tex] using minor method....

Rank of a Matrix – FAQs

Define Rank of a Matrix....

Contact Us