Equivalent Weight of Acids and Bases

The equivalent mass of an acid or base in an acid-base reaction is always equal to the mass that contributes to or interacts with one mole of the hydrogen ion (H+). In a similar manner, the mass that supplies or reacts with one gram mole of electrons (e-) produced in the redox reaction is the substance’s equivalent weight.

Knowing an acid’s molecular weight and the charge present in it helps to calculate its equivalent weight.

For example, take sulfuric acid,

H2SO4 + 2OH → 2H2O + SO42−

Using a periodic table to get each element’s MW and adding it we get 2(1) + (32) + 4(16) = 98.0, and we can determine the acid’s Molecular Weight.

Because the sulfate ion is left with a charge of 2, we get to know that this acid can give two protons. 

Hence, the equivalent weight = 98.0/2 = 49.0

Logic is the same for a base. A proton can be taken up by ammonium hydroxide in solution to form an ammonium ion:

NH4OH + H+ = H2O + NH4+

Ammonium hydroxide’s Molecular Weight is calculated as (14) + (4)(1) + (16) + 1 = 35.0

The equivalent Weight for this molecule is 35.0/1 = 35.0 since just one proton is consumed.

Equivalent Weight

The most commonly used phrase in chemistry is “equivalent weight,” which is also one of the fundamental concepts in physical chemistry. Equivalent weight commonly referred to as a gram equivalent is the mass of one equivalent or the mass of a particular material that will combine with or replace a specific amount of another substance. To say it another way, the mass of a substance that can displace 1.008 grams of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine is its gram equivalent or equivalent weight. Let us study the Equivalent Weight in detail in this article. 

Similar Reads

What is Equivalent Weight?

Equivalent weight is defined as the ratio of the molecular weight of the solute to the valency of the solute. The equivalent weight of the substance varies according to the reaction it undergoes. The normality of the solution is calculated using the equivalent weight of the substance. The general formula to calculate the equivalent weight is,...

How to calculate the Equivalent Weight?

The Equivalent Weight of a compound is the result of dividing the molecular weight by the charge number of that compound....

Moles

A compound is described as having 6.02 × 1023 distinct particles (atoms or molecules) per unit mole. In fact, there are exactly this many atoms in 12 grams of carbon. The mass of one mole of each element, or its molecular weight (MW), is given in the corresponding box for that element on the periodic table....

Equivalent Weight of Acids and Bases

The equivalent mass of an acid or base in an acid-base reaction is always equal to the mass that contributes to or interacts with one mole of the hydrogen ion (H+). In a similar manner, the mass that supplies or reacts with one gram mole of electrons (e-) produced in the redox reaction is the substance’s equivalent weight....

How to Calculate Gram-Equivalent Weight?

The number of grams of a substance divided by its equivalent weight is known as a gram equivalent. It can also be written as n moles times the number of charge elements present....

Solved Problems on Equivalent Weight

Question 1: Calculate the Equivalent weight of H2SO4....

Equivalent Weight – FAQs

What is equivalent weight?...

Contact Us