Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.5

In the article, we will solve Exercise 9.5 from Chapter 9, “Differential Equations” in the NCERT. Exercise 9.5 covers Homogeneous differential equations.

Basic Concept to Solve Exercise 9.5

STEP 1: First of all, prove that the given differential equation is a Homogeneous differential equation.

STEP 2: Then put

y = vx

                    
in the differential equation.

STEP 3: Then solve by using the variable separation method.

Exercise 9.5 Solution

In each of the Exercises 1 to 10, show that the given differential equation is homogeneous and solve each of them.

Q.1:

(x^2+xy)dy = (x^2+y^2)dx

                    

Solution:

We have

(x^2+xy)dy = (x^2+y^2)dx

                    
This equation can be written as –

\frac{dy}{dx} = \frac{(x^2+y^2)}{(x^2+xy)}

                    

Let

F(x,y) = \frac{(x^2+y^2)}{(x^2+xy)}

                    

F(\lambda x,\lambda y) = \frac{(\lambda x)^2+(\lambda y)^2}{(\lambda x)^2+(\lambda x)(\lambda y)} = \frac{ x^2+ y^2}{ x^2+ xy} = \lambda ^oF( x,  y)

                    

Thus, Equation is a homogeneous equation.

Let

y = vx

                    

Differentiating both sides with respect to x we get:

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v +x\frac{dv}{dx} = \frac{x^2+(vx)^2}{x^2+x(vx)}

                    

v +x\frac{dv}{dx} = \frac{1+v^2}{1+v}

                    

x\frac{dv}{dx} = \frac{1+v^2}{1+v}-v= \frac{(1+v^2)-v(1+v)}{1+v}

                    

(\frac{1+v}{1-v})dv= \frac{dx}{x}

                    

(\frac{2-1+v}{1-v})dv= \frac{dx}{x}

                    

(\frac{2}{1-v}-1)dv= \frac{dx}{x}

                    

Integrating both sides:

-2log(1-v)- v  = logx - logc

                    

v  = -2log(1-v)-logx +logc

                    

v  = log[\frac{c}{x(1-v)^2}]

                    

\frac{y}{x}  = log[\frac{c}{x(1-\frac{y}{x})^2}]

                    

\frac{y}{x}  = log[\frac{cx}{(x-y)^2}]

                    

[\frac{cx}{(x-y)^2}]=  e^\frac{y}{x}

                    

Hence the required solution is

(x-y)^2 = cxe^\frac{-y}{x}

                    

Q.2:

y^{'} = \frac{x+y}{x}

                    

Solution:

y^{'} = \frac{x+y}{x}

                    
can be written as

\frac{dy}{dx} = \frac{x+y}{x}

                    

Let

F(x,y) = \frac{x+y}{x}

                    

F( \lambda x,\lambda y) = \frac{ \lambda x+\lambda y}{ \lambda x} =  \frac{x+y}{x} = \lambda ^oF(x,y)

                    

Thus, Equation is a homogeneous equation.

Let

y = vx

                    

Differentiating both sides we get:

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v +x\frac{dv}{dx} = \frac{x+vx}{x}

                    

v +x\frac{dv}{dx} = 1+v

                    

x\frac{dv}{dx} = 1

                    

dv = \frac{dx}{x}

                    

On Integrating:

\int dv = \int \frac{dx}{x}

                    

v= log|x|+c

                    

\frac{y}{x}= log|x|+c

                    

Hence the required solution is

y= xlog|x|+cx

                    

Q.3:

(x-y)dy - (x+y)dx = 0

                    

Solution:

(x-y)dy - (x+y)dx = 0

                    
can be written as

\frac{dy}{dx} = \frac{x+y}{x-y}

                    

F(x,y) =\frac{x+y}{x-y}

                    

F( \lambda x, \lambda y ) = \frac{\lambda x+\lambda y}{\lambda x-\lambda  y} = \frac{x+y}{x-y} = \lambda ^oF(x,y)

                    

Thus, Equation is a homogeneous equation.

Let

y = vx

                    

On Differentiating:

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

From above, we have

\frac{dy}{dx} = \frac{x+y}{x-y} \ and \ y=vx

                    
, Substituting these values:

v +x\frac{dv}{dx} = \frac{x+vx}{x-vx} = \frac{1+v}{1-v}

                    

x\frac{dv}{dx} = \frac{1+v}{1-v}-v = \frac{1+v-v(1-v)}{1-v}

                    

x\frac{dv}{dx} = \frac{1+v^2}{1-v}

                    

( \frac{1-v}{1+v^2})dv = \frac{dx}{x}

                    

( \frac{1}{1+v^2}- \frac{v}{1+v^2})dv = \frac{dx}{x}

                    

\tan^{-1}v -\frac{1}{2}\log(1+v^2) = \log x +c

                    

\tan^{-1}(\frac{y}{x}) -\frac{1}{2}\log[1+(\frac{y}{x})^2] = \log x +c

                    

\tan^{-1}(\frac{y}{x}) -\frac{1}{2}\log[\frac{x^2+y^2}{x^2}] = \log x +c

                    

\tan^{-1}(\frac{y}{x}) -\frac{1}{2}[\log({x^2+y^2})-\log{x^2}] = \log x +c

                    

So,

\tan^{-1}(\frac{y}{x}) =\frac{1}{2}\log({x^2+y^2}) +c

                    

Q.4:

(x^2-y^2)dx+2xydy=0

                    

Solution:

(x^2-y^2)dx+2xydy=0

                    
can be written as

\frac{dy}{dx} = \frac{-(x^2-y^2)}{2xy}

                    

Let

F(x,y) =  \frac{-(x^2-y^2)}{2xy}

                    

F(\lambda x,\lambda y) = - [\frac{ (\lambda x)^2- (\lambda  y)^2}{2 (\lambda x )(\lambda  y)}] = -\frac{(x^2-y^2)}{2xy} = \lambda ^oF(x,y)

                    

Thus, differential equation is a homogeneous equation.

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v +x\frac{dv}{dx} = -[\frac{x^2-(vx)^2}{2x(vx)}]

                    

v +x\frac{dv}{dx} = \frac{v^2-1}{2v}

                    

x\frac{dv}{dx} = \frac{v^2-1}{2v}-v =  \frac{v^2-1- 2v^2}{2v}

                    

x\frac{dv}{dx} = \frac{-(1+v^2)}{2v}

                    

\frac{2v}{1+v^2} =-\frac{dx}{x}

                    

\log(1+v^2)=-\log x+\log c = \log(\frac{c}{x})

                    

1+v^2 =\frac{c}{x}

                    

1+(\frac{y}{x})^2 =\frac{c}{x}

                    

x^2+y^2 = cx

                    

Q.5:

x^2\frac{dy}{dx} = x^2-2y^2+xy

                    

Solution:

x^2\frac{dy}{dx} = x^2-2y^2+xy

                    
can be written as

\frac{dy}{dx} = \frac{x^2-2y^2+xy}{x^2}

                    

F(x,y) =  \frac{x^2-2y^2+xy}{x^2}

                    

F( \lambda x, \lambda y) =  \frac{(\lambda  x)^2-2 (\lambda  y)^2+ (\lambda x)( \lambda  y)}{ (\lambda  x)^2} = \frac{x^2-2y^2+xy}{x^2}= \lambda ^oF(x,y)

                    

Thus, given differential equation is a homogeneous equation.

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v +x\frac{dv}{dx} =  \frac{x^2-2(vx)^2+x(vx)}{x^2}

                    

v +x\frac{dv}{dx} = 1-2v^2+v

                    

x\frac{dv}{dx} = 1-2v^2

                    

\frac{dv}{ 1-2v^2} =\frac{dx}{x}

                    

\frac{dv}{ 2(\frac{1}{2}-v^2)} =\frac{dx}{x}

                    

\frac{1}{2}[\frac{dv}{ (\frac{1}{\sqrt2})^2-v^2}] =\frac{dx}{x}

                    

\frac{1}{2}\frac{1}{2\times\frac{1}{\sqrt2}}\log|\frac{\frac{1}{\sqrt2}+v}{\frac{1}{\sqrt2}-v}| = \log|x|+c

                    

\frac{1}{2\sqrt2}\log|\frac{\frac{1}{\sqrt2}+\frac{y}{x}}{\frac{1}{\sqrt2}-\frac{y}{x}}| = \log|x|+c

                    

\frac{1}{2\sqrt2}\log|\frac{x+\sqrt2y}{{x-\sqrt2y}}| = \log|x|+c

                    

Q.6:

xdy-ydx = \sqrt{x^2+y^2}dx

                    

Solution:

xdy-ydx = \sqrt{x^2+y^2}dx

                    
cab be written as

\frac{dy}{dx} = \frac{y+\sqrt{x^2+y^2}}{x}

                    

Let

F(x,y) =  \frac{y+\sqrt{x^2+y^2}}{x}

                    

F(\lambda x,\lambda  y) =  \frac{(\lambda y)+\sqrt{(\lambda x)^2+(\lambda y)^2}}{\lambda  x} = \frac{y+\sqrt{x^2+y^2}}{x} = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v+x\frac{dy}{dx} = \frac{vx+\sqrt{x^2+(vx)^2}}{x}

                    

v+x\frac{dy}{dx} = v+\sqrt{1+v^2}

                    

x\frac{dy}{dx} =\sqrt{1+v^2}

                    

\frac{dv}{\sqrt{1+v^2}} = \frac{dx}{x}

                    

\log|v+\sqrt{1+v^2}| = \log|x|+\log c

                    

\log|\frac{y}{x}+\sqrt{1+(\frac{y}{x})^2}| = \log|cx|

                    

\log|\frac{y+\sqrt{x^2+y^2}}{x}|= \log|cx|

                    

{y+\sqrt{x^2+y^2}}= cx^2

                    

Q.7:

\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}ydx = \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}xdy

                    

Solution:

\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}ydx = \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}xdy

                    
can be written as

\frac{dy}{dx} = \frac{\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}y}{ \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}x}

                    

F(x,y)= \frac{\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}y}{ \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}x}

                    

F(\lambda  x,\lambda  y)= \frac{\{{\lambda  x\cos (\frac{\lambda  y}{\lambda x})+ \lambda  y \sin(\frac{\lambda y}{\lambda x})}\}\lambda  y}{ \{{\lambda  y\sin (\frac{\lambda y}{\lambda x})-\lambda  x \cos(\frac{\lambda y}{\lambda x})}\}\lambda  x} = \frac{\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}y}{ \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}x} = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v+x\frac{dv}{dx}=\frac{\{{x\cos v+ vx \sin v}\}vx}{ \{{vx\sin v-x \cos v}\}x}

                    

v+x\frac{dv}{dx}=\frac{{v\cos v+ v^2 \sin v}}{ {v\sin v- \cos v}}

                    

x\frac{dv}{dx}=\frac{{v\cos v+ v^2 \sin v}}{ {v\sin v- \cos v}}-v

                    

x\frac{dv}{dx}=\frac{{v\cos v+ v^2 \sin v -{v^2\sin v+ v\cos v}}}{ {v\sin v- \cos v}}

                    

x\frac{dv}{dx}=\frac{2v\cos v}{ {v\sin v- \cos v}}

                    

[\frac{ {v\sin v- \cos v}}{v\cos v}]dv = \frac{2dx}{x}

                    

[ \tan v-\frac{1}{v} ]dv = \frac{2dx}{x}

                    

\log (\sec v) - \log v = 2\log x+\log c

                    

\log (\frac{\sec v}{v}) =\log(cx^2)

                    

(\frac{\sec v}{v}) =cx^2

                    

{\sec v} =cx^2v

                    

{\sec (\frac{y}{x})} =cx^2(\frac{y}{x})

                    

{\sec (\frac{y}{x})} =cxy

                    

\cos(\frac{y}{x}) = \frac{1}{cxy}

                    

xy\cos(\frac{y}{x}) = k  , where \space k = \frac{1}{c}

                    

Q.8:

x\frac{dy}{dx}-y +x\sin(\frac{y}{x})=0

                    

Solution:

x\frac{dy}{dx}-y +x\sin(\frac{y}{x})=0

                    
can be written as

\frac{dy}{dx} = \frac{y -x\sin(\frac{y}{x})}{x}

                    

F(x,y)= \frac{y -x\sin(\frac{y}{x})}{x}

                    

F(\lambda x,\lambda y)= \frac{\lambda y -\lambda x\sin(\frac{\lambda y}{\lambda x})}{\lambda  x}= \frac{y -x\sin(\frac{y}{x})}{x} =\lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v +x\frac{dv}{dx} = \frac{vx - x\sin v}{x}

                    

v +x\frac{dv}{dx} = v - \sin v

                    

x\frac{dv}{dx} = - \sin v

                    

\cosec vdv =-\frac{dx}{x}

                    

\log|\cosec v-\cot v| = -\log x+ \log c = \log\frac{c}{x}

                    

\cosec \frac{y}{x}-\cot  \frac{y}{x} =  \frac{c}{x}

                    

\frac{1}{\sin (\frac{y}{x})}-\frac{\cos  (\frac{y}{x})}{\sin ( \frac{y}{x})} =  \frac{c}{x}

                    

x[1-\cos  (\frac{y}{x})] = c\sin (\frac{y}{x})

                    

Q.9:

ydx+x\log(\frac{y}{x})dy-2xdy = 0

                    

Solution:

ydx+x\log(\frac{y}{x})dy-2xdy = 0

                    
can be written as

\frac{dy}{dx} =  \frac{y}{2x-x\log(\frac{y}{x})}

                    

Let

F(x,y) =  \frac{y}{2x-x\log(\frac{y}{x})}

                    

F(\lambda x,\lambda y) =  \frac{\lambda y}{2(\lambda x)-(\lambda x)\log(\frac{\lambda y}{\lambda  x})} = \frac{y}{2x-x\log(\frac{y}{x})} = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v+x\frac{dv}{dx} =  \frac{vx}{2x-x\log(\frac{vx}{x})}

                    

v+x\frac{dv}{dx} =  \frac{v}{2-\log v}

                    

x\frac{dv}{dx} =  \frac{v}{2-\log v}-v

                    

x\frac{dv}{dx} =  \frac{v-2v+v\log v}{2-\log v}

                    

x\frac{dv}{dx} =  \frac{v\log v- v}{2-\log v}

                    

\frac{2-\log v}{v(\log v- 1)}dv = \frac{dx}{x}

                    

[ \frac{1+(1-\log v)}{v(\log v- 1)}]dv = \frac{dx}{x}

                    

[ \frac{1}{v(\log v- 1)}- \frac{1}{v}]dv = \frac{dx}{x}

                    

\int \frac{1}{v(\log v- 1)}-\int \frac{1}{v}dv = \int\frac{dx}{x}

                    

\int \frac{1}{v(\log v- 1)}-\log v= \log x+\log c

                    

Let

(\log v -1) = t

                    

\frac{d}{dv}(\log v - 1) = \frac{dt}{dv}

                    

\frac{1}{v} = \frac{dt}{dv}

                    

\frac{dv}{v} = dt

                    

So,

\int \frac{dt}{t}-\log v= \log x+\log c

                    

\log t-\log v= \log x+\log c

                    

\log [\log (\frac{y}{x})-1]-\log (\frac{y}{x}) = \log (cx)

                    

\log [\frac{\log (\frac{y}{x})-1}{\frac{y}{x}}]-\log (\frac{y}{x}) = \log (cx)

                    

\frac{x}{y} [{\log (\frac{y}{x})-1}] =  cx

                    

{\log (\frac{y}{x})-1} =  cy

                    

Q.10:

(1+e^\frac{x}{y})dx+e^\frac{x}{y}(1-\frac{x}{y})dy = 0

                    

Solution:

(1+e^\frac{x}{y})dx+e^\frac{x}{y}(1-\frac{x}{y})dy = 0

                    
can be written as

\frac{dy}{dx} = \frac{-e^\frac{x}{y}(1-\frac{x}{y})}{(1+e^\frac{x}{y})}

                    

F(x,y) =  \frac{-e^\frac{x}{y}(1-\frac{x}{y})}{(1+e^\frac{x}{y})}

                    

F(\lambda x,\lambda y) =  \frac{-e^\frac{\lambda x}{\lambda y}(1-\frac{\lambda x}{\lambda y})}{(1+e^\frac{\lambda x}{\lambda  y})} = \frac{-e^\frac{x}{y}(1-\frac{x}{y})}{(1+e^\frac{x}{y})} = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

x = vy

                    

\frac{dx}{dy} = v +y\frac{dv}{dy}

                    

v+y\frac{dv}{dy} = \frac{-e^v(1-v)}{(1+e^v)}

                    

y\frac{dv}{dy} = \frac{-e^v+ve^v}{(1+e^v)}-v

                    

y\frac{dv}{dy} = \frac{-e^v+ve^v-v-ve^v}{1+e^v}

                    

y\frac{dv}{dy} = -[\frac{v+e^v}{1+e^v}]

                    

[\frac{v+e^v}{1+e^v}]dv = -\frac{dy}{y}

                    

\log(v+e^v) = \log( \frac{c}{y})

                    

(\frac{x}{y}+e^\frac{x}{y}) = \frac{c}{y}

                    

x+ye^\frac{x}{y} = c

                    

For each of the differential equations in Exercises from 11 to 15, find the particular solution satisfying the given condition.

Q.11:

(x+y)dy+(x-y)dx = 0 ;

                    
y = 1

                    
when
x=1

                    

Solution:

(x+y)dy+(x-y)dx = 0 ;

                    
can be written as

\frac{dy}{dx}=\frac{-(x-y)}{x+y}

                    

F(x,y) =\frac{-(x-y)}{x+y}

                    

F(\lambda x,\lambda y) =\frac{-(\lambda x-\lambda y)}{\lambda x+\lambda  y} = \frac{-(x-y)}{x+y} = \lambda ^o F(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v +x\frac{dv}{dx} = \frac{-(x-vx)}{x+vx}

                    

v +x\frac{dv}{dx} =  \frac{v-1}{v+1}

                    

x\frac{dv}{dx} = \frac{v-1}{v+1}-v = \frac{v-1-v(v+1)}{v+1}

                    

x\frac{dv}{dx}= \frac{v-1-v^2-v}{v+1} = \frac{-(1+v^2)}{v+1}

                    

\frac{v+1}{1+v^2}dv = -\frac{dx}{x}

                    

\frac{v}{1+v^2}+\frac{1}{1+v^2}]dv = -\frac{dx}{x}

                    

\frac{1}{2}\log(1+v^2)+\tan^{-1}v = -\log x +k

                    

\log(1+v^2)+2\tan^{-1}v = -2\log x +2k

                    

\log[(1+v^2)x^2]+2\tan^{-1}v = 2k

                    

\log[(1+(\frac{y}{x})^2)x^2]+2\tan^{-1}v = 2k

                    

\log(x^2+y^2)+2\tan^{-1}\frac{y}{x} = 2k

                    

Now, put

y = 1\space  and \space  x = 1

                    

\log(2)+2\tan^{-1}1 = 2k

                    

\log 2 + 2\times\frac{\pi}{4} = 2k

                    

we get,

\log(x^2+y^2)+2\tan^{-1}\frac{y}{x} = \frac{\pi}{2}+\log2

                    

Q.12:

x^2dy+(xy+y^2)dx = 0 ;

                    
y = 1

                    
when
x= 1

                    

Solution:

x^2dy+(xy+y^2)dx = 0 ;

                    
can be written as

\frac{dy}{dx} = \frac{-(xy+y^2)}{x^2}

                    

F(x,y) = \frac{-(xy+y^2)}{x^2}

                    

F(\lambda x,\lambda y) = \frac{-(\lambda x.\lambda y+(\lambda y)^2)}{(\lambda x)^2} = \frac{-(xy+y^2)}{x^2} = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v+x \frac{dy}{dx} =  \frac{-[x.vx+(vx)^2]}{x^2}  = -v-v^2

                    

x \frac{dy}{dx}  = -v^2-2v = -v(v+2)

                    

\frac{dv} {v(v+2)}  =  - \frac{dx}{x}

                    

\frac{1}{2}[\frac{2} {v(v+2)}]dv  =  - \frac{dx}{x}

                    

\frac{1}{2}[\frac{(v+2)-v} {v(v+2)}]dv  =  - \frac{dx}{x}

                    

\frac{1}{2}[\frac{1}{v} -\frac{1}{v+2}]dv  =  - \frac{dx}{x}

                    

\frac{1}{2}[\log{v} -\log{(v+2)}]  =  - \log{x} +\log c

                    

\frac{1}{2}\log(\frac{v}{v+2})  =  \log \frac{c}{x}

                    

\frac{v}{v+2}  =   (\frac{c}{x})^2

                    

\frac{\frac{y}{x}}{\frac{y}{x}+2}  =   (\frac{c}{x})^2

                    

\frac{y}{y+2x}  =   \frac{c^2}{x^2}

                    

\frac{x^2y}{y+2x}  =   {c^2}

                    

Now, put y = 1 and x = 1

\frac{1}{1+2}  =   {c^2}

                    

{c^2} = \frac{1}{3}

                    

\frac{x^2y}{y+2x}  =   \frac{1}{3}

                    

{y+2x}  =   3x^2y

                    

Q.13:

[x\sin^2(\frac{y}{x}-y)]dx+xdy = 0 ;

                    
y = \frac{\pi}{4}  \space when \space x = 1

                    

Solution:

[x\sin^2(\frac{y}{x}-y)]dx+xdy = 0 ;

                    
can be written as

\frac{dy}{dx} = \frac{-[x\sin^2(\frac{y}{x})-y]}{x}

                    

F(x,y)= \frac{-[x\sin^2(\frac{y}{x})-y]}{x}

                    

F(\lambda x,\lambda y)= \frac{-[\lambda x\sin^2(\frac{\lambda y}{\lambda x})-\lambda y]}{\lambda  x} = \frac{-[x\sin^2(\frac{y}{x})-y]}{x}  = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y = vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v+x\frac{dv}{dx} = \frac{-[x\sin^2v-vx]}{x}

                    

v+x\frac{dv}{dx} = {-[\sin^2v-v]}  = v-\sin^2v

                    

x\frac{dv}{dx}   = -\sin^2v

                    

\frac{dv}{\sin^2v } = -\frac{dx}{x}

                    

\cosec^2v {dv} = -\frac{dx}{x}

                    

-\cot v  = -\log|x| -\log c

                    

\cot v  = \log|x| +\log c

                    

\cot (\frac{y}{x})  = \log|x| +\log c

                    

\cot (\frac{y}{x})  = \log|cx|

                    

Now, put

y = \frac{\pi}{4}  \space at \space x = 1

                    

\cot (\frac{\pi}{4})  = \log|c|

                    

\log c = 1 \space; \space i.e \space c = e

                    

\cot (\frac{y}{x})  = \log|ex|

                    

Q.14:

\frac{dy}{dx} - \frac{y}{x}+\cosec{(\frac{y}{x})} = 0 ;

                    
y = 0 \space when \space x= 1

                    

Solution:

\frac{dy}{dx} - \frac{y}{x}+\cosec{(\frac{y}{x})} = 0 ;

                    
can be written as

\frac{dy}{dx} = \frac{y}{x}-\cosec{(\frac{y}{x})}

                    

F(x,y) = \frac{y}{x}-\cosec{(\frac{y}{x})}

                    

F(\lambda x,\lambda y) = \frac{\lambda y}{\lambda x}-\cosec{(\frac{\lambda y}{\lambda  x})}  =  \frac{ y}{ x}-\cosec{(\frac{ y}{  x})}  = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y =vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v +x\frac{dv}{dx} = v-\cosec v

                    

-\frac{dv}{\cosec v} = \frac{dx}{x}

                    

-\sin vdv = \frac{dx}{x}

                    

\cos v  = \log x +\log c = \log|cx|

                    

\cos (\frac{y}{x})  = \log|cx|

                    

y = 0 \space at \space  x= 1

                    

\cos (0) = \log c

                    

c = e^1 = e

                    

\cos (\frac{y}{x})  = \log|ex|

                    

Q.15:

2xy+y^2-2x^2\frac{dy}{dx} = 0 ;

                    
y = 2 \space when \space x =1

                    

Solution:

2xy+y^2-2x^2\frac{dy}{dx} = 0

                    
can be written as

\frac{dy}{dx} = \frac{2xy+y^2}{2x^2}

                    

Let

F(x,y) = \frac{2xy+y^2}{2x^2}

                    

F(\lambda x,\lambda y) = \frac{2(\lambda x)(\lambda y)+(\lambda y)^2}{2(\lambda  x)^2} = \frac{2xy+y^2}{2x^2} = \lambda ^oF(x,y)

                    

Thus, Given differential equation is a homogeneous equation.

Let

y =vx

                    

\frac{dy}{dx} = v +x\frac{dv}{dx}

                    

v+x\frac{dy}{dx} =  \frac{2x(vx)+(vx)^2}{2x^2}

                    

v+x\frac{dy}{dx} =  \frac{2v+v^2}{2}

                    

v+x\frac{dy}{dx} =  v+\frac{v^2}{2}

                    

\frac{2}{v^2}dv = \frac{dx}{x}

                    

2. \frac{v^{-2+1}}{-2+1} = \log|x|+c

                    

-\frac{2}{v} = \log|x|+c

                    

-\frac{2}{(\frac{y}{x})} = \log|x|+c

                    

-\frac{2x}{y} = \log|x|+c

                    

y = 1 \space at \space x= 1

                    

-1 = \log(1)+c

                    

c = -1

                    

-\frac{2x}{y} = \log|x|-1

                    

\frac{2x}{y} = 1-\log|x|

                    

y = \frac{2x}{1-\log|x| } ,  \space (x \neq 0 , x\neq e)

                    

Q.16: A homogeneous differential equation of the form

\frac{dx}{dy} = h(\frac{x}{y})

                    
can be solved by making the substitution.

(A)

y =vx

                    

(B)

v = yx

                    

(C)

x = vy

                    

(D)

x = v

                    

Solution:

For solving homogeneous equation of form

\frac{dx}{dy} = h(\frac{x}{y})

                    
, we need to make substitution as
x = vy

                    

.Thus, the correct option is C.

Q.17: Which of the following is a homogeneous differential equation?

(A)

(4x+6y+5)dy-(3y+2x+4)dx = 0

                    

(B)

(xy)dx-(x^3+y^3)dy =0

                    

(C)

(x^3+2y^2)dx+2xydy = 0

                    

(D)

y^2dx+(x^2-xy^2-y^2)dy = 0

                    

Solution:

F(x,y)

                    
is homogeneous function of degree n , if
F(\lambda x,\lambda y ) = \lambda^{'} F(x,y)

                    
for non-zero constant
\lambda

                    

.Consider equation given in D

y^2dx+(x^2-xy^2-y^2)dy = 0

                    
which can be written as

\frac{dy}{dx} = \frac{-y^2}{x^2-xy^2-y^2} =  \frac{y^2}{xy^2+y^2-x^2}

                    

F(x,y)=  \frac{y^2}{xy^2+y^2-x^2}

                    

F(\lambda x,\lambda y)=  \frac{(\lambda y)^2}{(\lambda x)(\lambda y)^2+(\lambda y)^2-(\lambda x)^2}  = \frac{y^2}{xy^2+y^2-x^2} = F(x, y )

                    

Thus, Differential equation given in D is a homogeneous equation.

Also Check,



Contact Us